高一数学集合知识点归纳

互联网 2024-04-01 阅读

立体几何(知识点)-2020年4月数学(理)开学大串讲

  一、知识点

  一常用结论

  1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.

  2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.

  3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.

  4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.

  5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直.

  6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.

  7.夹角公式:设a=,b=,则cos〈a,b〉=.

  8.异面直线所成角:=

  (其中为异面直线所成角,分别表示异面直线的方向向量)

  9.直线与平面所成角:(为平面的法向量).

  10、空间四点A、B、C、P共面,且x+y+z=1

  11.二面角的平面角

  或(,为平面,的法向量).

  12.三余弦定理:设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.则.

  13.空间两点间的距离公式若A,B,则=.

  14.异面直线间的距离:(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).

  15.点到平面的距离:(为平面的法向量,是经过面的一条斜线,).

  16.三个向量和的平方公式:

  17.长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有.

  (立体几何中长方体对角线长的公式是其特例).

  18.面积射影定理.(平面多边形及其射影的面积分别是,它们所在平面所成锐二面角的).

  19.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长,正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体:棱长为的正四面体的内切球的半径为,外接球的半径为.

  20.求点到面的距离的常规方法是什么?(直接法、体积法)

  21.求多面体体积的常规方法是什么?(割补法、等积变换法)

  〈二〉温馨提示:

  1.直线的倾斜角、两条异面直线所成的角等时它们各自的取值范围

  ①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次.

  ②直线的倾斜角、到的角、与的夹角的取值范围依次是.

  〈三〉解题思路:

  1、平行垂直的证明主要利用线面关系的转化:

  线面平行的判定:

  线面平行的性质:

  三垂线定理(及逆定理):

  线面垂直:

  面面垂直:

  2、三类角的定义及求法

  (1)异面直线所成的角θ,0°<θ≤90°

  (2)直线与平面所成的角θ,0°≤θ≤90°

  (三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)

  三类角的求法:

  ①找出或作出有关的角。

  ②证明其符合定义,并指出所求作的角。

  ③计算大小(解直角三角形,或用余弦定理)。

  二、题型与方法

  考点1点到平面的距离

  求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.

  考点2异面直线的距离

  此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.

  考点3直线到平面的距离

  此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.

  考点4异面直线所成的角

  此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点.

  考点5直线和平面所成的角

  此类题主要考查直线与平面所成的角的作法、证明以及计算.线面角在空间角中占有重要地位,是高考的常

  考内容.

  考点6二面角

  此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进求解.二面角是高考的热点,应重视.

  考点7利用空间向量求空间距离和角

  众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性.

  考点8简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断.

  考点9.简单多面体的侧面积及体积和球的计算

  二选择题辨析

  [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)

  ②直线在平面外,指的位置关系:平行或相交

  ③若直线a、b异面,a平行于平面,b与的关系是相交、平行、在平面内.

  ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.

  ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)

  ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)

  ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面.

  [注]:①直线与平面内一条直线平行,则∥.(×)(平面外一条直线)

  ②直线与平面内一条直线相交,则与平面相交.(×)(平面外一条直线)

  ③若直线与平面平行,则内必存在无数条直线与平行.(√)(不是任意一条直线,可利用平行的传递性证之)

  ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面.(×)(可能在此平面内)

  ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)

  ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)

  ⑦直线与平面、所成角相等,则∥.(×)(、可能相交)

  [注]:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)

  ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)

  ③垂直于同一平面的两条直线平行.(√)

  [注]:垂线在平面的射影为一个点.[一条直线在平面内的射影是一条直线.(×)]

  ⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上

  [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)

  ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直棱柱才行)

  ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)

  ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直.(两条边可能相交,可能不相交,若两条边相交,则应是充要条件)

  [注]:①一个棱锥可以四各面都为直角三角形.

  ②一个棱柱可以分成等体积的三个三棱锥;所以

  [注]:i.正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)

  ii.正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等

  iii.正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.

  [注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

  ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

  简证:AB⊥CD,AC⊥BDBC⊥AD.令

  得,已知

  则.

  iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

  iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

  简证:取AC中点,则平面90°易知EFGH为平行四边形EFGH为长方形.若对角线等,则为正方形.

  注:①若与共线,与共线,则与共线.(×)[当时,不成立]

  ②向量共面即它们所在直线共面.(×)[可能异面]

  ③若∥,则存在小任一实数,使.(×)[与不成立]

  ④若为非零向量,则.(√)[这里用到之积仍为向量]

高一数学集合知识点归纳

高一数学空间几何体的表面积和体积知识点总结

  1、圆柱体:

  表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:

  表面积:πR²+πR[(h²+R²)的平方根] 体积:πR²h/3 (r为圆锥体低圆半径,h为其高,

  3、正方体

  a-边长,S=6a² ,V=a³

  4、长方体

  a-长 ,b-宽 ,c-高 S=2(ab+ac+bc) V=abc

  5、棱柱

  S-底面积 h-高 V=Sh

  6、棱锥

  S-底面积 h-高 V=Sh/3

  7、棱台

  S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S2)^1/2]/3

  8、拟柱体

  S1-上底面积 ,S2-下底面积 ,S0-中截面积

  h-高,V=h(S1+S2+4S0)/6

  9、圆柱

  r-底半径 ,h-高 ,C—底面周长

  S底—底面积 ,S侧—侧面积 ,S表—表面积 C=2πr

  S底=πr²,S侧=Ch ,S表=Ch+2S底 ,V=S底h=πr²h

  10、空心圆柱

  R-外圆半径 ,r-内圆半径 h-高 V=πh(R^2-r^2)

  11、直圆锥

  r-底半径 h-高 V=πr^2h/3

  12、圆台

  r-上底半径 ,R-下底半径 ,h-高 V=πh(R²+Rr+r²)/3

  13、球

  r-半径 d-直径 V=4/3πr^3=πd^3/6

  14、球缺

  h-球缺高,r-球半径,a-球缺底半径 V=πh(3a²+h²)/6 =πh²(3r-h)/3

  15、球台

  r1和r2-球台上、下底半径 h-高 V=πh[3(r1²+r2²)+h²]/6

  16、圆环体

  R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径

  V=2π2Rr² =π2Dd²/4

  17、桶状体

  D-桶腹直径 d-桶底直径 h-桶高

  V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)

  V=πh(2D²+Dd+3d²/4)/15

数学知识点集合与函数概念

  集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(cantor,g.f.p,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。

  集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合

  集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

  元素与集合的关系

  元素与集合的关系有“属于”与“不属于”两种。

  集合与集合之间的关系

  某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合a的所有元素同时都是集合b的元素,则a称作是b的子集,写作a?b。若a是b的子集,且a不等于b,则a称作是b的真子集,一般写作a?b。中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』

  集合的几种运算法则

  并集:以属于a或属于b的元素为元素的集合称为a与b的并(集),记作a∪b(或b∪a),读作“a并b”(或“b并a”),即a∪b={xx∈a,或x∈b}交集:以属于a且属于b的元差集表示

  素为元素的集合称为a与b的交(集),记作a∩b(或b∩a),读作“a交b”(或“b交a”),即a∩b={xx∈a,且x∈b}例如,全集u={1,2,3,4,5}a={1,3,5}b={1,2,5}。那么因为a和b中都有1,5,所以a∩b={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说a∪b={1,2,3,5}。图中的阴影部分就是a∩b。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合

  1再相乘。48个。对称差集:设a,b为集合,a与b的对称差集a?b定义为:a?b=(a-b)∪(b-a)例如:a={a,b,c},b={b,d},则a?b={a,c,d}对称差运算的另一种定义是:a?b=(a∪b)-(a∩b)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令n是正整数的全体,且n_n={1,2,3,……,n},如果存在一个正整数n,使得集合a与n_n一一对应,那么a叫做有限集合。差:以属于a而不属于b的元素为元素的集合称为a与b的差(集)。记作:ab={x│x∈a,x不属于b}。注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集u不属于集合a的元素组成的集合称为集合a的补集,记作cua,即cua={xx∈u,且x不属于a}空集也被认为是有限集合。例如,全集u={1,2,3,4,5}而a={1,2,5}那么全集有而a中没有的3,4就是cua,是a的补集。cua={3,4}。在信息技术当中,常常把cua写成~a。共2页,当前第1页12

  集合元素的性质

  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合a={xx集合有以下性质

  若a包含于b,则a∩b=a,a∪b=b

  集合的表示方法

  集合常用大写拉丁字母来表示,如:a,b,c…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个等式来表示的,例如:a={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。

  常用的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{xp}(x为该集合的元素的一般形式,p为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x0

  4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作n;不包括0的自然数集合,记作n(2)非负整数集内排除0的集,也称正整数集,记作z+;负整数集内也排除0的集,称负整数集,记作z-(3)全体整数的集合通常称作整数集,记作z(4)全体有理数的集合通常简称有理数集,记作q。q={p/qp∈z,q∈n,且p,q互质}(正负有理数集合分别记作q+q-)(5)全体实数的集合通常简称实数集,记作r(正实数集合记作r+;负实数记作r-)(6)复数集合计作c集合的运算:集合交换律a∩b=b∩aa∪b=b∪a集合结合律(a∩b)∩c=a∩(b∩c)(a∪b)∪c=a∪(b∪c)集合分配律a∩(b∪c)=(a∩b)∪(a∩c)a∪(b∩c)=(a∪b)∩(a∪c)集合德.摩根律集合

  cu(a∩b)=cua∪cubcu(a∪b)=cua∩cub集合“容斥原理”在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合a的元素个数记为card(a)。例如a={a,b,c},则card(a)=3card(a∪b)=card(a)+card(b)-card(a∩b)card(a∪b∪c)=card(a)+card(b)+card(c)-card(a∩b)-card(b∩c)-card(c∩a)+card(a∩b∩c)1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。集合吸收律a∪(a∩b)=aa∩(a∪b)=a集合求补律a∪cua=ua∩cua=φ设a为集合,把a的全部子集构成的集合叫做a的幂集德摩根律a-(buc)=(a-b)∩(a-c)a-(b∩c)=(a-b)u(a-c)~(buc)=~b∩~c~(b∩c)=~bu~c~φ=e~e=φ特殊集合的表示复数集c实数集r正实数集r+负实数集r-整数集z正整数集z+负整数集z-有理数集q正有理数集q+负有理数集q-不含0的有理数集q

高一数学下册《集合》知识点总结

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1.元素的确定性; 2.元素的互异性; 3.元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

  1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}

  2.集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集) 记作:N

  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-3>2的解集是{x?R-3>2}或{x-3>2}

  4、集合的分类:

  1.有限集 含有有限个元素的集合

  2.无限集 含有无限个元素的集合

  3.空集 不含任何元素的集合 例:{x-5}

  二、集合间的基本关系

  1.“包含”关系子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设 A={x-1=0} B={-11} “元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ① 任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A)

  ③如果 A?B B?C 那么 A?C

  ④ 如果A?B 同时 B?A 那么A=B

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  三、集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.

  记作A∩B(读作”A交B”),即A∩B={x∈A,且x∈B}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x∈A,或x∈B}.

  3、交集与并集的性质:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A

  A∪φ= A A∪B = B∪A.

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  记作: CSA 即 CSA ={x ? x?S且 x?A}

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

  (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

事业单位招聘网

关于团结的优美句子