怎么判断合同(怎么判断两个矩阵是否合同)
大家好,如果你对怎么判断合同还有些模糊,那么这篇文章就是为你准备的。我们将对怎么判断合同进行深入讲解,同时也会带你一起了解关于怎么判断两个矩阵是否合同的相关信息。我们希望今天的分享可以帮到你,下面,让我们开始吧!
一、线性代数问题 怎么判断两个矩阵是否合同这个没有很好用的充分必要条件,只能用定义或简单结论
因为合同必等价,所以若两个矩阵的秩不相同,则它们不是合同的
若存在可逆矩阵C,使得 C'AC= B,则A与B合同,这是从定义的角度考虑.
若给两个显式矩阵,判断它们是否合同,只能把它们化成标准形,比较它们的正负惯性指数
正负惯性指数分别相等则合同,否则不合同.
很高兴为您解答,【高中生全科解答】团队为您答题.请点击下面的【选为满意回答】按钮.请谅解,
二、线性代数中***怎么判断两个矩阵是否合同
两矩阵合同有两种证法,如图
在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵C,使得C^TAC=B,则称方阵A合同于矩阵B.
一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
扩展资料实对称矩阵的主要性质:
1、实对称矩阵A的不同特征值对应的特征向量是正交的。
2、实对称矩阵A的特征值都是实数,特征向量都是实向量。
3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
4、若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
参考资料来源:百度百科-合同矩阵
三、如何判断矩阵是否合同
如果两个矩阵合同,则它们有相同的定号,有相同的秩,有相同的正负惯性指数,它们的行列式同号。
在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵C,使得C^TAC=B,则称方阵A合同于矩阵B.
一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
相似矩阵与合同矩阵的秩都相同。
扩展资料:
合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得,则称方阵A与B合同,记作 A≃B。
在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
合同关系是一个等价关系,也就是说满足:
1、反身性:任意矩阵都与其自身合同;
2、对称性:A合同于B,则可以推出B合同于A;
3、传递性:A合同于B,B合同于C,则可以推出A合同于C;
4、合同矩阵的秩相同。
矩阵合同的主要判别法:
1、设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.
2、设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。
旋转矩阵是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。
旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。它们解决的是如何组合集合中的元素以达到某种特定的要求。
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。
参考资料:百度百科---合同矩阵