小学数学知识大全
人教版数学下册知识点归纳
数学知识点总结
第一单元四则运算:加法、减法、
乘法和除法统称四则运算
1、加减法的意义和各部分间的关系。
(1)把两个数合并成一个数的运算,叫做加法。
加法各部分间的关系:
和=加数+加数加数=和-另一个数
(2)已知两个数的和与其中一个加数,求另一个数的运算,叫做减法。
减法各部分间的关系:被减数=差+减数
差=被减数-减数减数=被减数-差
(3)加法和减法是互逆运算。
2、乘除法的意义和各部分间的关系。
(1)求几个相同加数的和的简便运算,叫做乘法。
乘法各部分间的关系:
积=因数×因数因数=积÷另一个因数
(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
除法各部分间的关系:被除数=商×除数
商=被除数÷除数除数=被除数÷商
(3)乘法和除法是互逆运算。
3、关于“0”的运算
(1)“0”不能做除数;字母表示:a÷0错误
(2)一个数加上0还得原数;字母表示:a+0=a
(3)一个数减去0还得原数;字母表示:a-0=a
(4)被减数等于减数,差是0;字母表示:a-a=0
(5)一个数和0相乘,仍得0;字母表示:a×0=0
(6)0除以任何非0的数,还得0;字母表示:
0÷a(a≠0)=0
(7)被减数等于减数,差是0。A-A=0被除数等于除数,商是1.A÷A=1(a不为0)
4、四则运算顺序
(1)在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
(2)在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
(3)一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
第二单元观察物体(二)
1、正确辨认从上面、前面、左面观察到物体的现状。
2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意只分上下画数量。
3、从不同位置观察同一个物体,所看到的形状有可能一样,也有可能不一样。
4、从同位置观察不同一个物体,所看到的形状有可能一样,也有可能不一样。
5、从不同位置观察,才能更全面地认识一个物体。
6、时间×速度=路程路程÷时间=速度
路程÷速度=时间
单价×数量=总价总价÷单价=数量总价÷数量=单价
第三单元运算定律及简便运算
一、加减法运算定律:
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
3、连减的性质:a-b-c=a-(b+c)。
二、乘除法运算定律:
1、乘法交换律:。a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:
(1)两个数的和与一个数相乘:
(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
(2)两个数的差与一个数相乘:
(a-b)×c=a×c-b×c。
4、除法的性质:a÷b÷c=a÷(b×c)。
5、乘法分配律的应用:
①类型一:
(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
②类型二:
a×c+b×c=(a+b)×ca×c-b×c=(a-b)×c
③类型三:
a×99+a=a×(99+1)a×b-a=a×(b-1)
④类型四:a×99a×102
=a×(100-1)=a×(100+2)
=a×100-a×1=a×100+a×2
6、商不变性质:
a÷b=(a×c)÷(b×c),a÷b=(a÷c)÷(b÷c)
三、简便计算
1.连减的简便计算:
①连续减去几个数就等于减去这几个数的和。
如:106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。
如:126-(26+74)=126–26-74
2.加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)
例如:123+38-23=123–23+38
146–78+54=146+54-78
3.连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
如:120÷3÷4=120÷(3×4)
②除以几个数的积就等于连续除以这几个数。
如:455÷(7×13)=455÷7÷13
4.乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)
例如:27×13÷9=27÷9×13
5、含有加法交换律与6、含有乘法交换律与
结合律的简便计算:结合律的简便计算:
65+28+35+7225×125×4×8
=(65+35)+(28+72)=(25×4)×(125×8)
=100+100=100×1000
=200=100000
7、乘法分配律简算例子:
(1)分解式(2)合并式(3)特殊1
25×(40+4)135×12-135×299×256+256
=25×40+25×4=135×(12-2)=256×(99+1)
=1000+100=135×10=256×100
=1100=1350=2560
(4)特殊2(5)特殊3(6)特殊4
45×10299×2635×8+35×6-4×35
=45×(100+2)=(100-1)×26=35×(8+6-4)
=45×100+45×2=100×26-1×26=35×10
=4500+90=2600-26=350
=4590=2574
8、有关简算的拓展:
102×38-38×237×96+37×3+37
=38×(102-2)=37×(96+3+1)
=38×100=37×100
=3800=3700
第四单元小数的意义和性质
1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
7、小数的数位顺序表
(1)6.378的计数单位是0.001。
(最低位的计数单位是整个数的计数单位)
(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)
[4在十分位]
7、小数的性质:
小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。
9、小数的大小比较:
(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
10、小数点的移动
小数点向右移:
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;……
小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的十分之一;
移动两位,小数就缩小100倍,即小数就缩小到原数的百分之一;
移动三位,小数就缩小1000倍,即小数就缩小到原数的千分之一;……
11、生活中常用的单位:
质量:1吨=1000千克;1千克=1000克
长度:
1千米=1000米1米=10分米1分米=10厘米
1厘米=10毫米1分米=100毫米1米=10分米
1米=100厘米1米=1000毫米
面积:
1平方千米=100公顷1平方米=100平方分米1公顷=10000平方米1平方分米=100平方厘米
人民币:1元=10角1角=10分1元=100分
单位换算:
(1)大(高级)单位转化成小(低)级单位=======乘以进率,小数点向右移动。
(2)小(低级)单位转化成大(高级)单位=======除以进率,小数点向左移动。
12、小数的近似数(用“四舍五入”的方法):
(1)改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。
(2)在表示近似数时,小数末尾的“0”不能去掉。
第五单元三角形
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。
3、三角形的特性:稳定性。如:自行车的三角架,电线杆上的三角架。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:三边不等的△,等腰△,等边△或正△。
等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
9、有一个角是钝角的三角形叫做钝角三角形。
10、每个三角形都至少有两个锐角;每个三角形都最多有1个直角;每个三角形都最多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
12、三条边都相等的三角形叫等边三角形,也叫正三角形。
13、等边三角形是特殊的等腰三角形
14、三角形的内角和等于180°。四边形的内角和是360°多边形内角和=(边数-2)×180°
第六单元小数的加减法
1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。整数的小数点在个位右下角。
2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。
3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)
第七单元图形的运动
1、轴对称的意义:把一个图形沿着某一条直线对折,如果折痕的两边的部分能够完全重合,那么就说这个图形是轴对称图形,这条直线就是对称轴。
2、轴对称的性质:对应点到对称轴的距离相等。
3、轴对称的特征:沿对称轴对折、对应点、对应线段、对应角都重合。
4、轴对称的图形:等腰三角形和等腰梯形1、长方形2、等边三角形3、正方形4、圆形有无数条对称轴。
5、平移的意义:物体或图形沿直线方向运动,而本身方向不发生改变时,这种运动现象就是平移。
6、平移后图形的每个点与原图形的对应点之间的距离都相等。
7、怎样补全下面这个轴对称图形?在原图上标出关键点——找出关键点的对称点——连点成图
第八单元平均数和复式条形统计图
1、求平均数的方法:
将一组数据的和除以这组数据的个数所得商就是平均数。它既可以描述一种数据的总体情况,也可以作为不同组数据比较的一个标准。总数量÷总份数=平均数。
第九单元数学广角
鸡兔同笼:已知鸡、兔的总只数和脚数,求鸡、兔各几只。
1.列表法2.假设法:假设全是鸡,求出的是兔子。
五年级数学下册知识点
第一单元:方程
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。 等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数 减数=被减数-差被减数=减数+差
一个因数=积÷另一个因数除数=被除数÷商 被除数=商×除数
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。
第二单元:确定位置
1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元:公倍数和公约数
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。
4、两个素数的积一定是合数。举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)
数字与信息 1、我国目前采用的邮政编码为“四级六码”制。第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。 2、身份证编码规则:1-6位数字为行政区划代码,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。 7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为顺序码,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。18位为校验码,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用罗马数字符χ表示。
第四单元:认识分数
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
2、分母越大,分数单位越小,最大的分数单位是1/2
3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。3/7吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。
4、4米的1/5和1米的4/5同样长。
5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。
8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数= 除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母) 10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。 11、把分数化成小数的方法:用分数的分子除以分母。 12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,…… 13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。 14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。 16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。 17、分数大小比较的应用题:工作效率大的快,工作时间小的快。
18、求一个数是(占)另一个数的几分之几,用除法列算式计算。
第五单元:找规律
1、单向平移求不同的和的个数规律:方格的总个数—每次框出的个数+1=得到不同和的个数 2、双向平移:如果平移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向平移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。一共有多少种贴法=沿着长的贴法×沿着宽的贴法 3、中间的数×框出的个数=框出的每个数的和 框出的每个数的和÷框出的个数=中间的数(注意:有些数字的和是不能框出来的,(1)是框出的每个数的和÷框出的个数≠中间的数;(2)是虽然“框出的每个数的和÷框出的个数=中间的数”,但中间的数在边上;(3)出现有空白方格。)
第六单元:分数的基本性质
1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。 2、分子和分母只有公因数1,这样的分数叫最简分数。约分时,通常要约成最简分数。
3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。 约分方法:直接除以分子、分母的最大公因数。 例如:6/12 4、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。
5、比较异分母分数大小的方法:
(1)先通分转化成同分母的分数再比较。
(2)化成小数后再比较。
(3)先通分转化成同分子的分数再比较。
(4)十字相乘法。
球的反弹实验球的反弹高度实验的结论:(1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。(2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。
第七单元:统计
1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。 2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图)
第八单元:分数加减法
1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。 2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。 3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近1/2;分子分母越接近,分数就越接近1。 4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。 5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。乘法分配律也适用分数的简便计算。 6、裂项公式(用于特殊的简便计算)
密铺
1)、由线段围成的图形(三角形、长方形、正方形、梯形、平行四边形)能够密铺
2)、由曲线围成的图形(圆)不能够密铺。
第九单元:解决问题策略
1、倒推法是一种非常重要的数学思考方法,在计算、图形转换、时间推算等许多实际问题中都有应用。倒推时还用到一些反义词呢
2、要正确解决多次倒推的策略就是对题目先进行“整理”,通过“整理”过程来理清思路,再倒推回去或列方程解答。
3、对于条件出现“一半”的复杂倒推题目,通常通过画线段图帮助分析列算式来解决
第十单元:圆
1、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)
2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)
5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。
7、正方形里最大的圆。两者联系:边长=直径
画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
8、长方形里最大的圆。两者联系:宽=直径
画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
9、同一个圆内的所有线段中,圆的直径是最长的。
10、车轮滚动一周前进的路程就是车轮的周长。
每分前进米数(速度)=车轮的周长×转数
11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母π(读pài)表示。π是一个无限不循环小数。π=3.141592653……
我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14
12、如果用C表示圆的周长,那么C=πd或C = 2πr
13、求圆的半径或直径的方法:d = C圆÷π r= C圆÷ π÷2=C圆÷2π
14、半圆的周长等于圆周长的一半加一条直径。 C半圆= πr+2r C半圆= πd÷2+d
15、常用的3.14的倍数:
3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84
3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96
3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5
3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34
16、圆的面积公式:S圆=πr2。圆的面积是半径平方的π倍。
17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=C/2=πr)。即:S长方形= a × b
S圆 = πr × r= πr2
S圆 = π r2
注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2πr+2r=C圆+d
18、半圆的面积是圆面积的一半。S半圆=πr2÷2
19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
面积的倍数=半径的倍数2
20、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。
21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=πR2-πr2=π(R2-r2)
22、常用的平方数:11=121 12=144 13=169 14=196 15=225
16=256 17=28918=324 19=361 20=400
人教版数学上册知识点归纳
第一单元【大数的认识】
1、亿以内数的认识:
10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
整数部分数级…亿级万级个级数位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位计数单位…千亿百亿十亿亿千万百万十万万千百十个
2、一(个)、十、百、千、万.亿都是计数单位。
3、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。
4、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
5、按照我国的计数习惯,从右边起,每四个数位是一级。
6、亿以上数的读法:
①先分级,从高位开始读起。先读亿级,再读万级,最后读个级。
②亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。
③每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。
7、亿以上数的写法:
①从最高位写起,先写亿级,再写万级,最后写个级。
②哪个数位上一个单位也没有,就在那个数位上写0。
8、比较数的大小:
①位数不同的两个数,位数多的数比较大。
②位数相同的两个数,从最高位开始比较。
9、求近似数:
省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5还是等于或大于5。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。
10、表示物体个数:1,2,3,4,5,6,7,8,9,10,…….都是自然数。一个物体也没有,用0来表示,0也是自然数。所有的自然数都是整数。
11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
13、ON╱CE:开关及清除屏键,清除显示屏上的内容。
AC:清除键,清除所有内容。
第二单元【公顷和平方千米】
1、边长是100米的正方形面积是1公顷。1公顷=10000平方米
2、边长是1千米的正方形面积是1平方千米。1平方千米=1000000平方米
1平方千米=100公顷
3、从大单位变到小单位,乘以进率。如6公顷=平方米。
从小单位变到大单位,除以进率。如600公顷=平方千米。
4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如香港特别行政区的面积约1100。
广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44;
操场、教室等较小的面积适合用平方米。如一个教室的面积约60;
5、长方形面积=长×宽正方形面积=边长×边长
第三单元【角的度量】
1、直线:可以向两端无限延伸,没有端点。
射线:可以向一端无限延伸,只有一个端点。
线段:不能延伸,有两个端点,线段是直线的一部分。
2、直线、射线与线段有什么联系和区别
①直线和射线都可以无限延伸,因此无法量出长短。
②线段可以量出长度。
③线段有两个端点,直线没有端点,射线只有一个端点。
名称形状端点延伸线段直的2不能射线直的1一端直线直的0两端
3、从一点引出两条射线所组成的图形叫做角。
4、角的计量单位是“度”,用符号“°”表示。
将圆平均分成360份,每一份所对的角的大小是l度,记做1°。
5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。
6、度量角的工具叫量角器。
7、量角的步骤:
①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。
②角的另一条边所对的量角器上的刻度,就是这个角的度数。
8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°
10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°
1周角=2平角=4直角1直角=90°
11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。
锐角<直角<钝角<平角<周角
12、画角的步骤:
(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。
(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。
(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。
13、经过一点可以画无数条直线;经过两个点,只能画一条直线。
14、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°
第四单元【三位数乘两位数】
1、三位数乘两位数的笔算方法:
先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。
2、积的变化规律:
一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。
3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。
单价×数量=总价
单价=总价÷数量
数量=总价÷单价
4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
速度×时间=路程
速度=路程÷时间
时间=路程÷速度
5、速度单位通常有:千米/时、米/分、米/秒等。
第五单元【平行四边形和梯形】
1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
记作:a∥b读作:a平行于b
2、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b
3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
4、与两条平行线互相垂直的线段长度都相等。或者说:两条平行线之间的距离处处相等。
经过直线上一点(或外一点)作垂线,可以画一条。
5、同一平面内,与同一条直线平行(或垂直)的两条直线也互相平行。
6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。
8、平行四边形的特点:容易变形。例如:伸缩门、升降机
9、平行四边形和梯形有无数条高。
10、两腰相等的梯形叫做等腰梯形。特点:两腰相等,两底角相等。
11、有一个角是直角的梯形叫做直角梯形。特点:有一条腰就是梯形的高。
12、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
13、两个完全一样的三角形可以拼成一个平行四边形。
两个完全一样的梯形可以拼成一个平行四边形。
两个完全一样的直角梯形可以拼成一个长方形或平行四边形。
14、长方形是特殊的平行四边形,正方形是特殊的平行四边形。正方形是特殊的长方形。
15、三角形三个内角的和是180°,四边形四个内角的和是360°。
16、四边形小结:
两组对边分别平行的四边形叫做平行四边形;
只有一组对边平行的四边形叫梯形。
两腰相等的梯形叫做等腰梯形。
有一个角是直角的梯形叫做直角梯形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
第六单元【除数是两位数的除法】
1、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。
2、除数是两位数的除法的计算方法:
从被除数的高位除起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数。
除到被除数的哪一位,就在那一位上写商。
求出每一位商,余下的数必须比除数小。
3、商的变化规律:
被除数和商的变化相同。
除数和商的变化相反。
商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。
4、除数×商+余数=被除数(被除数-余数)÷商=除数
第七单元【条形统计图】
1、条形统计图的特点:能直观的看出各种数量的大小,便于比较。
2、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定。
第八单元【数学广角---优化】
1、沏茶问题:
合理安排时间的过程:(1)明确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。
2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。
3、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案。
办公室卫生管理制度
一、主要内容与适用范围
1.本制度规定了办公室卫生管理的工作内容和要求及检查与考核。
2.此管理制度适用于本公司所有办公室卫生的管理
二、定义
1.公共区域:包括办公室走道、会议室、卫生间,每天由行政文员进行清扫;
2.个人区域:包括个人办公桌及办公区域由各部门工作人员每天自行清扫。
1.公共区域环境卫生应做到以下几点:
1)保持公共区域及个人区域地面干净清洁、无污物、污水、浮土,无死角。
2)保持门窗干净、无尘土、玻璃清洁、透明。
3)保持墙壁清洁,表面无灰尘、污迹。4)保持挂件、画框及其他装饰品表面干净整洁。
5)保持卫生间、洗手池内无污垢,经常保持清洁,毛巾放在固定(或隐蔽)的地方。
6)保持卫生工具用后及时清洁整理,保持清洁、摆放整齐。7)垃圾篓摆放紧靠卫生间并及时清理,无溢满现象。
2.办公用品的卫生管理应做到以下几点:
1)办公桌面:办公桌面只能摆放必需物品,其它物品应放在个人抽屉,暂不需要的物品就摆回柜子里,不用的物品要及时清理掉。
2)办公文件、票据:办公文件、票据等应分类放进文件夹、文件盒中,并整齐的摆放至办公桌左上角上。3)办公小用品如笔、尺、橡皮檫、订书机、启丁器等,应放在办公桌一侧,要从哪取使用完后放到原位。4)电脑:电脑键盘要保持干净,下班或是离开公司前电脑要关机。5)报刊:报刊应摆放到报刊架上,要定时清理过期报刊。
6)饮食水机、灯具、打印机、传真机、文具柜等摆放要整齐,保持表面无污垢,无灰尘,蜘蛛网等,办公室内电器线走向要美观,规范,并用护钉固定不可乱搭接临时线。7)新进设备的包装和报废设备以及不用的杂物应按规定的程序及时予以清除。3.个人卫生应注意以下几点:
1)不随地吐痰,不随地乱扔垃圾。
2)下班后要整理办公桌上的用品,放罢整齐。
3)禁止在办公区域抽烟。4)下班后先检查各自办公区域的门窗是否锁好,将一切电源切断后即可离开。
5)办公室门口及窗外不得丢弃废纸、烟头、倾倒剩茶。
4.总经理办公室卫生应做到以下几点:1)保持地面干净清洁、无污物、污水、浮土,无死角。2)保持门窗干净、无尘土、玻璃清洁、透明。
3)保持墙壁清洁,表面无灰尘、污迹。4)保持挂件、画框及其他装饰品表面干净整洁。
三、检查及考核每天由领导检查公共区域的环境,如有发现不符合以上要求,罚10元/次。
2020学年数学上册全一册知识梳理
第一单元。
本单元知识盘点:
1.100以内的连加运算的计算方法。
按从左到右的顺序,先把前两个数相加,再用所得的和与第三个数相加。
2.100以内的连减运算的计算方法。
按从左到右的顺序,先把前两个数相减,再用所得的结果去减第三个数。
3.100以内的加减混合运算的计算方法。
按照从左到右的顺序依次计算。
4.用竖式计算连加、连减或加减混合算式。
可以用两个竖式分步计算,也可以把两个竖式连写。
5.使不相等的两个量变得相等的方法。
方法一:把多的量减少;
方法二:把少的量增多;
方法三:把多的量拿一些给少的量。
6.“求比一个数多(少)几的数是多少”的解题方法。
已知少的数,求多的数,用加法计算;已知多的数,求少的数,用减法计算。
本单元知识点易错汇总:
1.用竖式计算三个数连加时,个位满几十就向十位进几,十位上的数相加时,不要忘记加上个位进上来的数。
2.哪一位上退1后,计算时不要忘记减退位的1。
3.计算连加、连减或加减混合算式时,一定要按照从左到右的顺序进行计算。
4.加法和减法属于同一级运算,在计算时,没有先后之分,哪种运算在前就先算哪种运算。不可随意改变运算的顺序。
5.要使两组数量不同的物体变得同样多,首先看哪组物体的数量多,再看多多少,最后把多的个数分成相等的两份,把其中的一份补给少的即可。
本单元重难点内容:
1.掌握100以内连加、连减的计算方法(重点)。
2.理解竖式连写的算理(难点)。
3.掌握100以内加减混合运算的计算方法(重点)。
4.明确加减混合运算的运算顺序(难点)。
5.掌握把两组数量不同的物体变得同样多的方法(重点)。
6.体会解决问题方法的多样化(难点)。
7.掌握求比一个数多(少)几的数是多少的解题方法(重点)。
8.能根据实际问题选择恰当的计算方法(难点)。
本单元知识重要考点:
1.100以内的连加、连减和加减混合运算。
2.解决问题。
第二单元。
本单元知识盘点:
1.四边形。
由四条边首尾顺次相接围成的封闭图形是四边形。长方形和正方形都是特殊的四边形。
2.五边形。
由五条边首尾顺次相接围成的封闭图形是五边形。
3.六边形。
由六条边首尾顺次相接围成的封闭图形是六边形。
4.平行四边形。
形如的图形是平行四边形。平行四边形也是特殊的四边形。
5.平行四边形易变形。
本单元知识点易错汇总:
1.判断某一个图形是不是平行四边形时,要记清平行四边形的特征,不要因为图形的摆放形式而影响对图形的判断。
2.画平行四边形时,要保证对边相等。
本单元重难点内容:
1.认识四边形、五边形、六边形等平面图形(重点)。
2.在图形的变化过程中感受平面图形的内在联系(难点)。
3.认识平行四边形(重点)。
4.能准确地在方格纸上画出平行四边形(难点)。
本单元知识重要考点:
1.四边形、五边形、六边形的认识。
2.平行四边形的认识。
第三单元。
本单元知识盘点:
1.乘法的意义。
求几个相同加数的和,用乘法计算比较简便。
2.乘法算式各部分的名称。
3.把几个相同加数连加的算式改写成乘法算式的方法。
相同加数和相同加数的个数分别作为乘法算式中的乘数,加法算式的和也就是乘法算式中的积。
4.乘法算式的读法。
读乘法算式要从左往右。如:3×4=12读作三乘四等于十二。
5.1~6的乘法口诀。
一一得一
一二得二二二得四
一三得三二三得六三三得九
一四得四二四得八三四十二四四十六
一五得五二五一十三五十五四五二十五五二十五
一六得六二六十二三六十八四六二十四五六三十
六六三十六
6.乘法口诀中的前两个数分别作为乘法算式中的乘数,乘法口诀的得数就是乘法算式的积。一般地,可以根据一句乘法口诀写出两道乘法算式。
7.解决实际问题时,其中有一组的物体少一些,其他的都同样多,可以这样想,把少的一堆先不看,先用乘法求数量相同的堆的物体的个数,再加上没有计算的部分,也就是用乘加计算;也可以这样想,把少的一堆也看成与其他堆同样多,先用乘法计算几个几,然后再去掉多算的物体的个数,也就是用乘减计算。
8.乘加、乘减的运算顺序。
先算乘法,再算加、减法。
本单元知识点易错汇总:
1.“几个几”可以分段理解,“几个”表示加数的个数,后一个“几”表示相同的加数。
2.把相同加数相加的加法算式改写成乘法算式时,要用相同加数的个数与相同加数相乘。
3.要注意区分乘法与加法,两个相同的数相加与两个相同的数相乘的意义完全不同。
4.写乘法算式时,可以交换两个乘数的位置,但读乘法算式时,只能按照从左到右的顺序依次去读。
5.写乘法口诀时,一定要全部使用汉字,不能用阿拉伯数字。
6.乘法口诀是固定的,不能随意添字或丢字。
7.写乘法口诀时,较小的数在前,较大的数在后。
8.在乘加、乘减的算式中,要先算乘法,再算加、减法。
9.看图列乘减算式时,多算了几就要减去几。
本单元重难点内容:
1.理解乘法的意义,知道乘法算式中各部分的名称(重点)。
2.体会乘法和加法的联系和区别(难点)。
3.熟记1~4的乘法口诀(重点)。
4.经历乘法口诀的编制过程(难点)。
5.熟记5的乘法口诀(重点)。
6.能运用5的乘法口诀计算(难点)。
7.理解乘加、乘减的含义,掌握乘加、乘减的计算方法(重点)。
8.利用乘加、乘减解决生活中的实际问题(难点)。
9.掌握6的乘法口诀,能运用6的乘法口诀进行计算(重点)。
10.理解6的乘法口诀的含义(难点)。
本单元知识重要考点:
1.乘法的初步认识。
2.1~6的乘法口诀。
3.乘加、乘减。
4.解决实际问题。
第四单元。
本单元知识盘点:
1.平均分的含义。
每份分得同样多,叫作平均分。
2.平均分的方法。
第一种是先确定每份分得的个数,然后看平均分成几份;第二种是先确定平均分成几份,然后看每份分得多少个。
3.除法的含义。
把一些物体平均分,无论是已知总数和每份分得的个数,求平均分成几份。还是已知总数和平均分成的份数。求每份分得多少个,都可以用除法计算。
4.除法算式的读法。
读除法算式要从左往右。6÷2=3读作六除以二等于三。
5.除法算式各部分的名称。
6.用1~6的乘法口诀求商。
用乘法口诀求商时,先想除数和几相乘得被除数,再用补充口诀的形式求商。
本单元知识点易错汇总:
1.判断是不是平均分,应看每份的个数是否同样多。
2.解决平均分的问题时要注意两点:一是要明确分几份,二是要让每份分得同样多。
3.平均分的时候要把物品都分掉。
4.用除法求每份是多少时,总数要写在除号前面,平均分成的份数要写在除号后面,每份分得的个数要写在等号后面。
5.不要把“除”和“除法”相混淆。
6.当乘法算式中的两个乘数相同时,只能写出一道除法算式。
本单元重难点内容:
1.理解平均分的含义,掌握把一些物体每几个分成一份的方法(重点)。
2.体会平均分的实质就是每份同样多(难点)。
3.掌握“把一些物体平均分成几份,求每份是多少”的方法(重点)。
4.体会平均分的不同策略(难点)。
5.掌握平均分的两种方法,感悟平均分的本质特征(重点)。
6.体会平均分的两种方法的联系和区别(难点)。
7.能根据具体的问题情境列出相应的除法算式,知道除法算式的读法、写法及各部分的名称(重点)。
8.结合具体情境理解除法算式表示的实际含义(难点)。
9.掌握用乘法口诀求商的方法,学会用1~6的乘法口诀进行简单的除法计算(重点)。
10.根据除法算式正确地找到相应的乘法口诀(难点)。
本单元知识重要考点:
1.认识平均分。
2.除法的初步认识。
3.用1~6的乘法口诀求商。
4.解决实际问题。
第五单元。
本单元知识盘点:
1.线段的特征。
直的,有两个端点,可以测量出长度。
2.画线段的工具。
直尺、三角尺等。
3.数线段。
在数图形中的线段时,要按照一定的顺序数,才能不重复、不遗漏。
4.认识厘米。
在直尺上,每相邻两个刻度之间的距离都是1厘米。量比较短的物体的长度,可以用厘米做单位,厘米可以用字母“c表示。
5.用直尺测量物体长度的方法。
方法一:通常要把物体的一端对准尺子的0刻度,看物体的另一端指到几就是几厘米。
方法二:如果物体的一端没有对准0刻度,就用另一端指到的刻度减去开始的刻度,也能测量出物体的长度。
6.画线段的方法。
画线段时,从直尺的刻度“0”开始画,需要画几厘米长的线段就画到直尺的几厘米处;或者从某一个刻度开始画,经过几个大格,就是几厘米,画完后不要忘记标两个端点。
7.认识米。
米是比厘米长的长度单位,测量比较长的物体的长度,通常用米做单位,米可以用字母“表示。
8.厘米与米之间的关系。
米和厘米之间的进率是100,1米=100厘米或1。
9.用米尺测量物体的长度。
每量出1米的长度后做上标记,再从标记处继续量,边量边数,一共有几个1米,就是几米。
10.在比较或计算不同单位长度的量时,一定要先统一单位。
本单元知识点易错汇总:
1.判断是不是线段时,一定要满足两个条件:①线段是直的,②线段有两个端点。
2.无论用哪种测量工具测量物体的长度,测量时都要一个紧挨着一个摆放。
3.用直尺量物体的长度时,物体的一端要与直尺的刻度“0”对齐,而不是与直尺的一端对齐。
4.如果物体的一端没有对准“0”刻度,那么线段右端所对刻度减左端所对刻度的差才是线段的长度。
5.量比较高的物体时,通常用“米”做单位。
6.米和厘米都是长度单位,1米里面有100个1厘米。
7.身高可以用米做单位,也可以用厘米做单位,用米做单位时,前面的数一般在2以内;用厘米做单位时,前面的数一般是几十以上,200以内。
本单元重难点内容:
1.了解线段的特征,会画线段(重点)
2.在简单图形中准确数出线段的条数(难点)。
3.初步建立1厘米的长度表象,会用直尺测量物体的长度(重点)。
4.会量、画指定长度的线段(难点)。
5.认识长度单位“米“,知道1米=100厘米(重点)。
6.会用米尺测量物体的长度(难点)。
本单元知识重要考点:
1.线段的初步认识。
2.认识厘米和米。
3.解决实际问题。
第六单元。
本单元知识盘点:
1.7的乘法口诀。
一七得七二七十四三七二十一四七二十八
五七三十五六七四十二七七四十九
温馨提示:7的乘法口诀有7句,每相邻两句的积相差7。当两个乘数不同时,一句口诀对应两道乘法算式;当两个乘数相同时,一句口诀只对应一道乘法算式。
2.8的乘法口诀。
一八得八二八十六三八二十四四八三十二
五八四十六八四十八七八五十六八八六十四
温馨提示:8的乘法口诀有8句,每相邻两句的积相差8。
3.9的乘法口诀。
一九得九二九十八三九二十七四九三十六
五九四十五六九五十四七九六十三八九七十二
九九八十一
温馨提示:(1)9的乘法口诀有9句,每相邻两句的积相差9。(2)9的乘法口诀的规律:几和九相乘,所得的积就是几十减几。
4.巧记9的乘法口诀。
用我们的左、右手来记忆9的乘法口诀,弯曲的手指从左数是第几就表示几个9,弯曲手指的左侧手指数表示积的十位数字,右侧手指数表示积的个位数字。
5.利用口诀求商的方法。
先想除数乘几等于被除数,再根据乘法口诀算出商。
6.连乘、连除和乘除混合运算的运算顺序。
按照从左到右的顺序依次计算。
本单元知识点易错汇总:
1.一般情况下,一句乘法口诀都可以写出两道乘法算式,乘数相同的除外。
2.和n×计算时使用的是同一句乘法口诀。
3.通常情况下,一个积对应一句乘法口诀,但也有一些比较特殊的,如:积是4,6,8,9,12,16,18,24,36的乘法口诀都有两句。
4.五九四十五,六九五十四最容易混淆,因此要将这两句口诀区分开。
5.编制口诀时,不要受方言和口语的影响,口诀书写一定要规范。
6.计算连乘、连除和乘除混合运算时,要按从左到右的顺序。
本单元重难点内容:
1.编制并记忆7的乘法口诀(重点)。
2.借助7的乘法口诀计算乘法算式(难点)。
3.学会用7的乘法口诀求商(重点)。
4.用7的乘法口诀熟练地进行计算(难点)。
5.熟记8的乘法口诀,并能正确地计算(重点)。
6.灵活运用乘法口诀进行乘、除法计算(难点)。
7.掌握9的乘法口诀,会利用9的乘法口诀计算表内乘、除法(重点)。
8.探究9的乘法口诀的规律(难点)。
9.熟记乘法口诀,并能运用乘法口诀正确熟练地计算表内乘、除法(重点)。
10.探究乘法口诀表的规律(难点)。
11.掌握连乘、连除和乘除混合运算的运算顺序(重点)。
12.准确记住两步计算中第一步的得数,再进行第二步计算(难点)。
本单元知识重要考点:
1.7,8,9的乘法口诀和用口诀求商。
2.连乘、连除和乘除混合运算。
3.解决实际问题。
第七单元。
本单元知识盘点:
1.判断物体的形状是从哪个方位看到的。
可以根据物体的形状特点,想从哪个方位看这个物体才能看到这种形状,由此判断是从哪个方位看到的。
2.判断从某一方位看到的物体的形状。
先通过观察、比较来分析物体的各个方向是什么形状,然后判断从某一方位所能看到的物体的形状。
本单元知识点易错汇总:
解观察物体的题时,要仔细观察,注意区分相似的图片间的不同特点。
本单元重难点内容:
1.体会从不同的位置观察同一物体,看到的形状可能是不同的(重点)。
2.能根据看到的形状正确判断观察者的位置(难点)。
本单元知识重要考点:
观察物体。
有用的数学知识
期中考试前,我对妈妈说:“如果我每门功课都考到95分以上,就给我买一台帆妮儿的显微镜吧。”
妈妈说:“显微镜你现在还用不着,也不太懂;再说,分数并不重要,重要的是你要细心答题,哪怕得了90分,只要你认真审题,仔细检查了,妈妈也很高兴啊!需要买什么妈妈也会给你买的。”
考试完了,我觉得考得挺好,我就盼望着发卷子的这一天。
分数出来了,我的语文得了94.5,数学得了100分,分数没有达到自己的要求。可我实在想要个礼物了。我就想:买不了显微镜,那就买个望远镜吧。可是怎么给妈妈说呢
我又想了想,对妈妈说:“我把数学的100分给语文1分,这样就都超过95分了。”
妈妈笑着说:“好小子,学会退而求其次了。这样吧,假如说语文得了94分,你要是能把两门功课都算成一样多,我就答应你买望远镜。看你想什么办法来说服妈妈。”
我仔细地想啊想,想到了我们以前学过的除法和平均分。
我恍然大悟,赶紧说:“¥%§※@&#▲←◇★※.”
妈妈说:“慢点说,你激动什么呀,我听不懂!”
我喝了口水,放慢了声调,说:“10094=194,194÷2=97,100-97=3。把数学的100分给语文3分,两门就都是97分了,这就是平均分!”
妈妈很满意,表扬我说:“好呀,会运用数学知识了。星期六我们就去买个望远镜。”
我很高兴,想:数学知识真有用啊,到了关键时候就能用上,还让我尝到了甜头!
数学知识
数学对于每个人来说都很难,但数学其实并不是那么难,很简单,告诉你一个诀窍:只要上课认真听讲,仔细读题,你就会觉得数学特别好学,很简单,一点也不难。
今年,我们学习了不少知识。认识正、负数这一单元,我知道了:我国数学家刘微在注解《九章算术》时,更明确的提出了正数与负数的概念。他在筹算中规定“正算赤,负算黑”,就是用红色算筹来表示正数,黑色算筹来表示负数。这个记载,比国外早了七八百年。从这里可以看得出来,正数和负数的作用。
检查视力用的视力表上也有小数,现在我国使用的是国家标准视力表。当检查结果等于或大于5.0时,视力为正常,小于5.0,视力你应该知道的,对不对?如果你不近视,也要注意用眼卫生噢!
两个数相除,如果得不到整除商,会出现有限小数和无限小数,小数部分的数位是有限的,就叫做有限小数。小数部分的数位无限,那就是无限小数。循环小数是无限小数,一个循环小数的小数部分,依次不断地重复出现的数字,就是这个小数的循环节。你知道什么是有限小数、无限小数了吗
数学知识无处不在,数学其实不难吧!让我们学好数学,将来成为中国的第二个“华罗庚”吧!
总结数学知识
早在寒假就有这个打算,六年级下册在数学这方面我要学会总结,每天都总结。开学后,这个计划没有遗忘,无论每天多忙,都会拨出一点时间回忆今天所学的知识,然后用自己的话总结下来。
今天,就来晒晒我的数学总结本吧!
2.17.第一讲;总结:
为了表示两种意义相反的量,出现了一种新的数——负数。
先说说正数,一到六年级学过的所有数,除了0之外,都是正数。这一单元里有的正数前加了“﹢”正号,这是为了强调它是负数,因为这一单元主要讲的是负数。其实“﹢”可加可不加。如:﹢3/5、3/5其实并无区别。
再说说负数,负数在生活中用途也不小。例如:冬天有比较冷的时候,这时的温度往往会用负数来表示。写作:-××℃;读作:零下××摄氏度。还有电梯有地下一层或二层:-1层读作负一层。负号不可省略。
PS.0不是正数,也不是负数。
2.18.第二讲;总结:
今天我们又学习了新知识:用数轴表示数和比较数的大小。
用数轴表示数:数轴首先要有基本的三条:原点、正方向与单位长。原点就相当于一个标准量。正方向是自己规定的,若说东是正方向,那么向西走20米就要记作-20米。单位长也是自己设置的,一段,你说它多长它就是多长,数轴的每一段画的时候要基本相等。
用数轴表示数可以更清楚明了了解题意,帮助做题。
比较负数的大小:比较负数的大小,有几种方法。负数与负数比较,先不看负号,负号后面的数越小这个负数就越大;若是正数与负数比较,那一定是正数>负数,因为负数都<0,而正数>0.
比较大小可以利用数轴帮助比较,数轴上越靠左的数越大。
上册数学1单元知识点
1、圆是由n加油曲线围成的平面封闭图形。圆中心的一点叫圆心,用字母O表示。以某n加油一点为圆心,可以画无数个圆。连接圆心和圆上任n加油意一点的线段叫半径,用字母r表示。连接圆心并且两端n加油都在圆上的线段叫直径,用字母d表示。
2、圆有无数条半径,有无数条n加油直径。圆心决定圆的位置,半径决定圆的大小。
3、在n加油同一个圆中,所有的半径都相等,所有的直径都相等。
1在同n加油一个圆中,直径是半径的2倍,半径是直径的。2
4、n加油车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚n加油动时,圆心在一条直线上运动,这样的车轮运行才稳定。
5、在一个正方形里画一个最n加油大的圆,圆的直径就是正方形的边长。在一个长方n加油形里画一个最大的圆,圆的直径就是长方形的宽
6、把圆对折,再对折n加油(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直n加油线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。n加油
7、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,n加油这条直线叫做对称轴,这时,我们也说这个图形关于这条直线n加油的轴对称。对称轴是一条直线。
“教书先生”恐怕是市井百姓最为n加油熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么n加油说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”n加油概念并非源于教书,最初出现的“先生”一词也并非有传授n加油知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中n加油的“有酒食,先生馔”;《国策》中的“先生n加油坐,何至于此?”等等,均指“先生”为父兄或有n加油学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说n加油法。可见“先生”之原意非真正的“教师”之意,倒是与当今n加油“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专n加油称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越n加油礼而与人言”,其中之“先生”意为“年长、资深之传n加油授知识者”,与教师、老师之意基本一致。8、常见的轴对称图形:等n加油腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、n加油正方形(4条)、圆(无数条)、半圆(1条)。
9、圆一周的长度就是n加油圆的周长。圆的周长总是直径的3倍多一些,圆的n加油周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周n加油率,用字母π表示,π是一个无限不循环小数,为了计算简便,通n加油常取近似值3.14。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至n加油宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属n加油句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清n加油代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可n加油见,“教师”一说是比较晚的事了。如今体会,“教师”n加油的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革n加油命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
10、圆的周长n加油=圆周率×直径。即C圆=πd=2πn加油r。
数学知识点归纳
班级_______姓名
知识点概括总结
1.大数的认识:
(1)亿以内的数的认识:
十万:10个一万;
一百万:10个十万;
一千万:10个一百万;
一亿:10个一千万;
2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。
3.数级分类
(1)四位分级法
即以四位数为一个数级的分级方法。我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。
(2)三位分级法
即以三位数为一个数级的分级方法。这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。这就说明计数单位和数位的概念是不同的。
5.数的产生:阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。
阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。
6.自然数:用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。
7.计算工具:算盘、计算器、计算机。
8.射线:在几何学中,直线上的一点和它一旁的部分所组成的图形称为射线。如下图所示:
8.射线特点
(1)射线只有一个端点,它从一个端点向另一边无限延长。
(2)射线不可测量。
9.直线:直线是点在空间内沿相同或相反方向运动的轨迹。
10.线段:线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。
11.线段特点
(1)有限长度,可以测量
(2)两个端点
12.线段性质:
(1)两点之间线段最短。
(2)连接两点间线段的长度叫做这两点间的距离。
(3)直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
直线没有距离。射线也没有距离。因为,直线没有端点,射线只有一个端点,可以无限延长。
13.角
(1)角的静态定义
具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
14.角的符号:角的符号:∠
15.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
16.乘法:乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
17.乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数)×(乘号)200(因数)=(等于号)2000(积)
18.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
19.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
20.平行四边形:在同一平面内有两组对边分别平行的四边形叫做平行四边形。
21.梯形:梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。
22.除法:除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
扩展资料
1.“数位”与“位数”、“计数单位”均为意义不同的概念。
“数位”是指一个数的每个数字所占的位置。数位顺序表从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。同一个数字,由于所在的数位不同,它所表示的数值也就不同。例如,在用阿拉伯数字表示数时,同一个‘6’,放在十位上表示6个十,放在百位上表示6个百,放在亿位上表示6个亿等等。
“位数”是指一个自然数中含有数位的个数。像458这个数有三个数字组成,每个数字占了一个数位,我们就把它叫做三位数。198023456由9个数字组成,那它就是一个九位数。“数位”与“位数”不能混淆。
计数单位:一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿……,都是计数单位。“个位”上的计数单位是“一(个),“十位”上的计数单位是“十”,“百位”上的计数单位是“百”,“千位”上的计数单位是“千”,“万位”上的计数单位是“万”等等。所以在读数时先读数字再读计数单位。
2.自然数知识扩展
自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。一定是整数。用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。
3.角的其他分类
平角:等于180°的角叫做平角。
优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
4.平行线的性质
(1)两条直线平行,同旁内角互补。
(2)两条直线平行,内错角相等。
(3)两条直线平行,同位角相等。
5.平行线的判定(同一平面内)
(1)同旁内角互补,两直线平行。
(2)内错角相等,两直线平行。
(3)同位角相等,两直线平行。
(4)如果两条直线同时与第三条直线平行,那么这两条直线互相平行。
(5)如果两条直线同时垂直于第三条直线,那么这两条直线互相平行。
6.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
四年级下册
知识点概括总结1.整数加法(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
(3)加数+加数=和,一个加数=和-另一个加数
2.整数减法(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
(3)加法和减法互为逆运算。
3.整数乘法(1)求几个相同加数的和的简便运算叫做乘法。
(2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
(3)在乘法里,0和任何数相乘都得0.
(4)1和任何数相乘都的任何数。
(5)一个因数×一个因数=积;一个因数=积÷另一个因数
4.整数除法(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
(3)乘法和除法互为逆运算。
(4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
(5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。
5.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
6.整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
7.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
8.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
9.运算顺序
(1)小数、分数、整数小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。
(2)没有括号的混合运算同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
(3)有括号的混合运算先算小括号里面的,再算中括号里面的,最后算括号外面的。
(4)第一级运算加法和减法叫做第一级运算。
(5)第二级运算乘法和除法叫做第二级运算。
10.加法交换律加法交换律的概念为:两个加数交换位置,和不变。
字母公式:a+b+c=(b+a)+c
11.加法结合律加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c=a+(b+c)
12.乘法交换律
乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:a×b=b×a
13.乘法结合律乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。
字母公式:a×b×c=a×(b×c)
14.乘法分配律
乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b)×c=a×c+b×c
15.小数:
小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数,小数是十进制分数的一种特殊表现形式。
16.小数基本性质
小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
17.小数的写法
整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
18.小数的读法
一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读.例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。
另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0。例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。
19.小数的比较
小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较。因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大;
20.小数的性质:
(1)在小数的末尾添上零或去掉零,小数的大小数不变.
(2)小数点移动会引起小数大小发生变化.把小数点分别向右移动一位、二位、三位…位,则小数的值分别扩大10倍、100倍、1000倍……
如果把小数点分别向左移动一位、二位、三位…则小数的值分别缩小到原来的十分之一、百分之一、千分之一…
21.小数的近似值:
保留小数:按要求在舍去部分最高位进行四舍五入运算。
22.小数加法小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
23.小数减法小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
24.三角形
由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
25.生活中的三角形物品
雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。
26.三角形中的线段
(1)中线:顶点与对边中点的连线,平分三角形的面积。
(2)高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。
(3)角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴)
(4)中位线:任意两边中点的连线。
27.三角形为什么具有稳定性
任取三角形两条边,则两条边的非公共端点被第三条边连接
∵第三条边不可伸缩或弯折
∴两端点距离固定
∴这两条边的夹角固定
∵这两条边是任取的
∴三角形三个角都固定,进而将三角形固定
∴三角形有稳定性
人教版下册数学知识点
1、①(东与西)相对,(南与北)相对,
(东南—西北)相对,(西南—东北)相对。
②清楚以谁为标准来判断位置。
③理解位置是相对的,不是绝对的。
2、地图通常是按(上北、下南、左西、右东)来绘制的。(做题时先标出北南西东。)
3、会看简单的路线图,会描述行走路线。
一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。
4.、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5.、生活中的方位知识:
①北斗星永远在北方。
②影子与太阳的方向相对。
③早上太阳在东方,中午在南方,傍晚在西方。
④风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)
第二单元除数是一位数的除法
1、口算时要注意:
(1)0除以任何数(0除外)都等于0;
(2)0乘以任何数都得0;
(3)0加任何数都得任何数本身;
(4)任何数减0都得任何数本身。
2、没有余数的除法:有余数的除法:
被除数÷除数=商被除数÷除数=商……余数
商×除数=被除数商×除数+余数=被除数
被除数÷商=除数(被除数—余数)÷商=除数
3、笔算除法顺序:确定商的位数,试商,检查,验算。
(1)一位数除两位数(商是两位数)的笔算方法:先用一位数除十位上的数,如果有余数,要把余数和个位上的数合起来,再用除数去除。除到被除数的哪一位,就把商写在那一位上面。
(2)一位数除三位数的笔算方法:先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。
(3)除法的验算方法:
没有余数的除法的验算方法:商×除数:被除数;
有余数的除法的验算方法:商×除数+余数=被除数。
4、基本规律:
(1)从高位除起,除到哪一位,就把商写在那一位;
(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)
(3)哪一位有余数,就和后面一位上的数合起来再除;
(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
增:第二单元课外知识拓展
5、2、3、5倍数的特点
2的倍数:个位上是2、4、6、8、0的数是2的倍数。
5的倍数:个位上是0或5的数是5的倍数。
3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。比如:462,4+6+2=12,12是3的倍数,所以462是3的倍数。
6、关于倍数问题:
两数和÷倍数和=1倍的数
两数差÷倍数差=1倍的数
例:已知甲数是乙数的5倍,甲乙两数的和是24,求甲乙两数
这里把乙数看成1倍的数,那甲数就是5倍的数。它们加起来就相当于乙数的6倍了,而它们加起来的和是24。这也就相当于说乙数的6倍是24。所以乙数为:24÷6=4,甲数为:4×5=20
同样:若已知甲数是乙数的5倍,甲乙两数之差是24,求甲乙两数
这里把乙数看成1倍的数,那甲数就是5倍的数。它们的差就相当于乙数的4倍了,而它们的差是24。这也就相当于说乙数的4倍是24。所以乙数为:24÷4=6,甲数为:6×5=30
7、和差问题
(两数和—两数差)÷2=较小的数
(两数和+两数差)÷2=较大的数
例:已知甲乙两数之和是37,两数之差是19,求甲乙两数各是多少
如图:
解析:如果给甲数加上“乙数比甲数多的部分(两数差)”(虚线部分),则由图知,甲数+两数差=乙数。如是:甲数+两数差+乙数=甲数+乙数+两数差=两数和+两数差
又有:甲数+两数差+乙数=乙数+乙数=乙数×2
知道:两数和+两数差=乙数×2
(两数和+两数差)÷2=乙数
解:假设乙数是较大的数。乙:(37+19)÷2=28甲:28-19=9
8、锯木头问题。
王叔叔把一根木条锯成4段用12分钟,锯成5段需要多长时间
如图,锯成4段只用锯3次,也就是锯3次要12分钟,那么可以知道锯一次要:12÷3=4(分钟)
而锯成5段只用锯4次,所需时间为:4×4=16(分钟)
9、巧用余数解决问题。
①÷8=6……,求被除数最大是,最小是。
根据除法中“余数一定要比除数小”规则,余数最大应是7,最小应是1。
再由公式:商×除数+余数=被除数,知道被除数最大应是6×8+7=55,最小应是6×8+1=49。
②少年宫有一串彩灯,按1红,2黄,3绿排列着,请你猜一猜第89个是什么颜色
……
由图可知,彩灯一组为:1+2+3=6(个),照这样下去,89÷6=14(组)……5(个)第89个已经有像上面的这样6个一组14组,还多余5个;这5个再照1红,2黄,3绿排列下去,第5个就是绿色的了。
③加一份和减一份的余数问题。
例1:38个去划船,每条船限坐4个,一共要几条船
38÷4=9(条)……2(人)
余下的2人也要1条船,9+1=10条。
答:一共要10条船。
例2:做一件成人衣服要3米布,现在有17米布,能做几件成人衣服
17÷3=5(件)……2(米)
余下的2米布不能做一件成人衣服答:能做5件成人衣服。
第三单元复式统计表
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
第四单元两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:
(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加
(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:
(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。
(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。
(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:
一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:
先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。
小技巧:口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
如:30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000
笔算乘法
先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
注意事项
1.估算:18×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
2、有大约字样的一般要估算。
3、凡是问够不够,能不能等的题,都要三大步:
①计算、②比较、③答题。→别忘了比较这一步。
几个特殊数:
25×4=100,125×8=1000
4、相关公式:
因数×因数=积
积÷因数=另一个因数
5、两位数乘两位数积可能是(三)位数,也可能是(四)位数。
6、一个两位数与11的速算技巧:
第五单元面积
面积和面积单位:
1.常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。
2.理解面积的意义和面积单位的意义。
面积:物体表面或封闭图形的大小,叫做它们的面积。
1平方米:边长是1米的正方形,它的面积是1平方米。
1平方分米:边长是1分米的正方形,它的面积是1平方分米。
1平方厘米:边长是1厘米的正方形,它的面积是1平方厘米。
3.在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲盖)、1平方分米(电脑光盘或电线插座)、1平方米(教室侧面的小展板)。
4.区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。