定积分的计算方法
定积分计算方法总结
一、 定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、 定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、 定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则 >= dx
2) 利用被积函数所满足的不等式比较之 a)
b) 当0 2. 估计具体函数定积分的值 积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为 M(b-a)<= <=M(b-a) 3. 具体函数的定积分不等式证法 1) 积分估值定理 2) 放缩法 3) 柯西积分不等式 ≤ % 4. 抽象函数的定积分不等式的证法 1) 拉格朗日中值定理和导数的有界性 2) 积分中值定理 3) 常数变易法 4) 利用泰勒公式展开法 四、 不定积分计算方法 1. 凑微分法 2. 裂项法 3. 变量代换法 1) 三角代换 2) 根幂代换 3) 倒代换 4. 配方后积分 5. 有理化 6. 和差化积法 7. 分部积分法(反、对、幂、指、三) 8. 降幂法 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 •定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 •定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 •性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 •推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。 •推论(x)dx∫ab(x)。 •性质设M及别是函数f(x)在区间[a,b]上的最大值和最小值,则-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 •性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a 定积分的应用 1、求平面图形的面积(曲线围成的面积) •直角坐标系下(含参数与不含参数) •极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) •旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) •平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) •功、水压力、引力 •函数的平均值(平均值y=1/(b-a)*∫abf定积分的计算方法总结