全等三角形教案
数学如何学好全等三角形知识点
能够完全重合的两个图形叫做全等形.
能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.
[全等三角形的性质]
全等三角形的对应边相等,全等三角形的对应角相等
[找对应边、对应角的方法]
(1)公共边是对应边,公共角是对应角
(2)对应角所对的边是对应边,对应边所对的角是对应角
(3)对应角所夹的边是对应边,对应边所夹的角是对应角
(4)最长(最短)边是对应边,最大(最小)角是对应角
(5)平行边是对应边,对顶角是对应角
三角形全等的条件
[边边边]
三边对应相等的两个三角形全等.(SSS)
[边角边]
全等三角形电子课件
1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2、继续培养学生画图、实 验,发现新知识的能力、
【重点难点】
1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;
2、重点:灵活运用SSS判定两个三角形是否全等、
【教学过程 】
一、创设问题情境,引入新课
请问学生,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的、
(学生们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等、)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等、满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究、
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗
先请几位学生说说画图思路后,教师指导,学生们动手画,教师演示并叙述书写出步骤、
步骤:
(1)画一线段AB使 它的长度等于c(4、8c、
(2)以点A为圆心,以线段b(3c的长为半径画圆弧;以点B为圆心,以线段a(4c的长为半径画圆弧;两弧交于点C、
(3)连结AC、BC、
△ABC即为所求
把你画的三角形与其他学生的图形叠合在一起,你们会发现什么
换三条线段,再试试看,是否有同样的 结论
请你结合画图、对比,说说你发现了什么
学生们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的、 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S、S、S、)、
2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形、)
3、问题3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
三、小结
本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用( SSS )来判定三角形全等、三个角对应相等的两个三角不一定会全等。
全等三角形定义课件
一、知识点:
1. 全等三角形:
⑴全等形:能够完全重合的两个图形叫全等形。
⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。
⑶全等三角形的性质:全等三角形对应边相等,对应角相等。
2.三角形全等的性质:
全等三角形的识别:SAS,ASA,AAS,SSS,HL(直角三角形)
3.角平分线的性质:
⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。
⑵角平分线的判定:到角两边距离相等的点在角的平分线上。
⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
二、经验与提示
1.寻找全等三角形对应边、对应角的规律:
① 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
② 全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角。
③ 有公共边的,公共边一定是对应边。
④ 有公共角的,公共角一定是对应角。
⑤ 有对顶角的,对顶角是对应角。⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)
2.找全等三角形的方法
(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;
(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
3.角的平分线是射线,三角形的角平分线是线段。
4.证明线段相等的方法:
(1)中点定义;
(2)等式的性质;
(3)全等三角形的对应边相等;
(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。随着知识深化,今后还有其它方法。
全等三角形优质课课件
一、教材背景及学情分析:
本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1 全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的性质,探索发现全等三角形的性质.新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的性质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识练习紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。
二、教学目标分析:
1、知识技能
了解全等形及全等三角形的概念,能理解全等三角形的性质,并能熟练找出两个全等三角形的对应角、对应边。
2、数学思考
在图形的变换以及实际操作的过程中,发展学生的空间观念,培养学生的几何直观能力。
3、过程与方法
在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径
4、情感态度与价值观
让学生在观察、发现生活中的全等形和实际操作中获得全等形和全等三角形的体验;在探究和运用全等三角形性质的过程中感受数学活动的乐趣。
5、教学重点
⑴全等三角形以及相关概念。
⑵探索全等三角形的性质.
6、教学难点
寻找并掌握全等三角形对应角、对应边的方法。
三、教法分析
《课标》指出:学生是学习的主人,教师是学习的组织者、引导者、合作者,本节课以学生的活动为主线,以突出重点、突破难点、发展学生的数学素养为目的,采用以自学辅导式为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合,注重数学与生活的联系,创设一系列有启发式、挑战性的为题激发学生学习的兴趣,引导学生用数学的眼光思考问题,发现规律,验证猜想,注重师生互动,生生互动,更着眼于学生的实际,充分提现学生的心理需要,从而发展他们的能力和自主学习的意识。
四、课前准备
教具:直尺、三角形纸板、同一底片的两张照片、多媒体课件。
学具:同一底片的照片两张、三角形纸板。
五、教学过程
1、创设情境、激发兴趣,引入新课
问题1:我们每个人手里的数学课本在外形和大小上有什么关系呢?你能发现下面的里两个图形有什么美妙关系吗?(多媒体展示)
通过学生观察、猜想初结论后,教师板书课题(本环节约3分钟)
2、动手实践、师生互动、启发思维
问题2:学生自己动手(同桌互相配合)。
⑴、 把同一底片洗出来的两张照片上的图形沿边框剪下来,把剪下来的 图片放在一起,你有什么发现
⑵、 取一张纸,将自己的三角板按在纸上,画下图形,照图形裁下来,纸样与三角形的形状、大小有什么关系
⑶、 问题3:通过刚才的体验,大家谈谈什么样的两个图形是全等形,全等三角形?如何表示两个全等三角形呢
(本环节约6分钟)
3、动态演示,观察归纳,尝试体验(多媒体演示)
问题4:三角形在平移、翻折、旋转的过程中是否发生了改变?各图中的两个三角形全等吗?(多媒体演示,给学生更直观的启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有变,所以平移、翻折、旋转前后的图形全等,这是利用运动的方法寻找全等的一种策略)。
本环节约5分钟
4、自主学习,深入思考,获取概念。
通过学生自学课本P31内容,理解全等三角形对应元素的概念,培养学生的数学概念辨析能力,并能将三角形经过平移、翻折、旋转前后的对应元素找出来,同时能正确的表示两个全等三角形,强调要将对应的顶点写在对应的位置上。
5、启发猜想,合作实践,验证猜想。
问题5:全等三角形的对应角有什么关系呢?对应边呢?(通过对图形的观察、以及演示,启发学生大胆猜想,并通过动手实践、验证猜想的正确性。)
本环节约5分钟
6、学以致用,分层练习,巩固提高(多媒体展示)
通过对三个练习题的讨论分析、总结得出根据文职元素寻找对应角、对应边的方法,从而配用学生对较复杂图形的识别能力,进一步加深学生对全等三角形的认识。
本环节约10分钟
7、反馈评价,师生小结(多媒体展示)
问题6:本节课你学到了什么?你最大的收获是什么?你还有什么问题呢
本环节有5分钟
8、回味知识,布置作业
未了加深学生对知识的理解,促进学生对课堂的反思,布置阅读本节课内容后,分层次完成P33页12.1 第1、2题。
六、板书设计
七、教学反思:
本教学设计通过学生在做模型、画图、动手操作等活动中亲身体验,完成对三角形实验,加深对“三角形全等”、“对应”含义的理解,即培养学生的画图、识图能力,又提高了逻辑思维能力。在整个教学过程中,学生在自主探索和合作交流中,经历了观察、实验、归纳、类比、直觉、数据处理等思想过程,而这样的过程能够促进学生对数学的正真理解和把握,从而不仅获得了数学知识、技能,而且经历了数学活动的过程,体验了数学活动的方法。同时,情感、态度价值观都能得到很好的发展。
证明三角形全等的课件
一、设计的意图:
现在教学中我们使用的是新教材,新教材向我们提供的是一种教学素材,新教材有些知识点较旧教材难度有所降低,但对知识的手段要求更高了,灵活性更强了,解决问题的方法更多了,这就要求教师备课时要充分挖掘教材,领会课程标准的要求,深入揣摩编者的意图,由于八年级的学生已经具备了抽象思维能力,实践能力和探索能力,这就要求教师把教学内容要重新进行整合。数学《新课程标准》要求数学教学是数学活动的教学,教学过程中从实际出发,关注学生自主学习合作交流的意识,充分体现教师是学生学习活动的组织者,引导者、合作者,本节课是结合具体的数学活动内容采用“问题情境—建立模型—解释—应用拓展”的模式和结构展开,让学生经历知识的形成与应用的过程,从而增强学生学习数学的热情。这就要求数学教师在实际数学教学中充分利用现代化教学手段,创造性地使用教材,积极开发、利用各种教学资源,合理利用现代信息技术,把信息技术更好地应用到数学教学中去。
二、作用:
多媒体辅助教学在现代化数学教学中起着越来越重要的作用,其教学手段具有直观性,内容具有丰富性,特别是在许多无法用实物教学的过程中起着无可替代的作用。它能极大地激发学生的学习兴趣,以形象具体的图、文、声、动等手段活跃课堂气氛,在数学教学中能克服许多常规教学中无法解决的困难,便于在短时间内让不同层次的学生得到相应的知识,同时增大课堂容量,对于提高学生的知识水平,培养学生的创新思维有着传统教学中无法比拟的优势,因此,我们把这一节课以的形式展示给学生们,学生们在这些丰富多彩以及动感的学习环境中,对教学内容更容易领会和掌握。
三、效果预测:
我们的制作采用当今操作比较简单,应用比较广,省时、省力的POWERPORT软件,该软件动感也比较强,是非常易于操作的一个软件平台。
然后,我们用激励性的语言和一只展翅飞翔的鹰做了一个片头,这为学生们学习本节课的知识充满了自信,也很给力,同时使心情得到放松,让学生在轻松愉快中去学习。
接着,我们用一个生活当中的实际问题导入这节课,让学生体会到数学于现实生活,同时又反作用于现实生活。由于这个问题在课堂上是无法用实物教学的,所以我们把这一问题制作成幻灯片,让学生通过联想,眼前呈现现实情境,使学生身临其境,同时,提高了学生的学习兴趣,激活了学生学习探究的欲望。
在这同时,我们把其它的内容也制作成了幻灯片,来实现图形和文字等一些要素的结合,使教师利用多媒体教学实现和学生更好地互动,并节省了一些时间,扩充了知识的范围,增加了课堂的容量,优化了课堂教学,从而高效地完成教学目标的过程。
在的制作上,我们把有的图形设计成动画,使学生对知识的理解更直观,更形象了,避免传统式枯燥的说教,使学生在轻松愉悦中掌握了知识,同时,难点得到突破。并在文字的设计上,我们把关键的字和词配上颜色,加深对学生的印象,使重点得到突出,详略得当。
四、的制作力求创新:
我们对这节课的制作上尽量简洁实用,突出实效性,避免出现一些花哨的画面,干扰学生的学习,分散学生的注意力,达到使用与课堂教学的完美结合。同时,我们并没有完全依赖于教学,还是以教材为主线,以为辅的教学理念充实课堂教学。
全等三角形说课课件
一、说教材
全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
二.教学的目标和要求:
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标。
1.知识目标:
(1)理解全等三角形的概念。
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角,对应边.
2.能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力.
3.情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
三.教学重点:
探究全等三角形的性质。
四.教学难点:
正确判断两个全等三角形的对应边,对应角。
五、说教法
教学生观察、归纳的方法
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
六、说学法
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
六、教学用具:
剪刀,直尺,三角板
七、教学过程:
首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。直观感知全等形的概念。再让学生思考发现生活中有哪些全等形。
然后,教师安排学生自己动手在一张白纸上任意画上一个三角形,再把两张纸小心的重叠在一起,并固定,然后小心地用剪刀剪出两个三角形,让学生通过动手实践合作交流,直观感知全等三角形的概念,并给出全等三角形的表示方法。
然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念。从实践中感知:一个图形经过平移,翻折,旋转,位置变化了,但形状,大小都没有变,即平移,翻折,旋转前后的图形全等。
然后,让学生给刚才剪出的两个三角形标上字母,并任意放置,与同桌交流,其一:任何时候两个三角形能够完全重合在一起吗?其二:此时它们的顶点,边,角,有什么特点?学生通过操作交流,从而更深刻理解对应角,对应边,对应点的概念以及关系。
再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。
其次,对学生进行随堂练习,深化知识。练习内容为两个全等三角形,任意摆放,找出它的对应边,对应角,对应顶点。并用符与表示出两个全等三角形。
最后,教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
全等三角形的课件
一、教材分析
(一) 本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形与全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二) 教学目标
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三) 教材重难点
由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。
二、教法选择与学法指导
本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
三、教学流程
(一)创设情景,激发求知欲望
首先,我出示一个实际问题:
问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……
然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以与毛毛一起来攻克这个难题呢
这样设计的目的是既交代了本节课要研究与学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(二)引导活动,揭示知识产生过程
数学教学的本质就是数学活动的教学,为此,本节课我设计了下列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。
活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。
活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。
活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。
教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。
活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺与剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。
活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7c,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。
最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。
若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗
活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5c,看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。
教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。
(三)例题教学,发挥示范功能
例题教学是课堂教学的一个重要环节,因此,怎样充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。
首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。
问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。
问题2: 你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗
这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:
(1) 基础知识应用。完成教材P139练一练2。
(四)课堂小结,建立知识体系。
(1) 本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。
(2) 你还有哪些疑问
三角形全等课件
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节,这是全章的开篇,也是全等条件的基础;它是继线段、角、相交线与平行线及三角形有关知识之后出现的;通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用。
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法;通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质。
二、教学目标分析
知识与技能
1。了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。
2。能准确确定全等三角形的对应元素。
3。掌握全等三角形的性质。
过程与方法
1。通过找出全等三角形的对应元素,培养学生的识图能力。
2。能利用全等三角形的概念、性质解决简单的数学问题。
情感、态度与价值观
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性。使学生勇于提出问题,乐于探索问题。同时注重培养学生善于合作交流的良好情感和积极向上的学习态度。
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定。
难点:全等三角形对应元素的确定。
四、学情分析
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期。为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识。
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合。
全等三角形课件
1、 学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3、 学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4、 教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 、教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初二学生有一定的难度。
根据初二学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。。
6 、教学过程(略)
教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式
7、反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出:
1、 一个条件:一角,一边
2 、两个条件:两角; 两边;一角一边
3 、三个条件:三角; 三边;两角一边;两边一角
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
初中数学说课课件:《全等三角形》
一.教学目标:
1. 知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。会区分命题的条件和结论。知道判断一个命题是假命题的方法。
2. 过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
3、、情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值。
二.教学要点:找出命题的条件(题设)和结论。
三.教学重点:找出命题的条件(题设)和结论。
四.教学难点:命题概念的理
五.教学过程:
一、复习引入
教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。根据我们已学过的图形特性,试判断下列句子是否正确。
1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等。 二、探究新知
(一)命题、真命题与假命题
学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4水错误的。像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题。 教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的。题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果....,那么.......”的形式。用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。 有的命题的题设与结论不十分明显,可以将它写成“如果......,那么...........”的形式,就可以分清它的题设和结论了。例如,命题5可写成“如果两个角是直角,那么这两个角相等。”
(二)实例讲解
1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果....,那么.......”的形式,并分别指出命题的题设和结论。学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”。
2、教师提出问题2:把下列命题写成“如果..,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。(1)对顶角相等;(2)如果a> b,b> c, 那么a=c;(3)菱形的四条边都相等;(4)全等三角形的面积相等。 学生小组交流后回答,学生回答后,教师给出答案。(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题。(2)条件:如果a> b,b> c;结论:那么a=c;这是假命题。(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等。这是真命题。(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题。
(三)假命题的证明
教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”。 例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可。
二、随堂练习
课本P55练习第1、2题。
三、总结
1、什么叫命题?什么叫真命题?什么叫假命题
2、命题都可以写成“如果..,那么.......”的形式。
3、要判断一个命题是假命题,只要举出一个反例就行了。
四、布置作业
课本习题13.1第1题、第2题。