高中数学几何题解题技巧
文科数学复习要点
在中国古代把数学叫算术,又称算学,最后才改为数学。查字典数学网为大家推荐了高三文科数学复习要点,请大家仔细阅读,希望你喜欢。
1向考生强调:确保简单题全拿分,中档题少失分
《考试说明》中要求高考数学考查中学的基础知识、基本技能的掌握程度,在考查基础知识的同时,注重考查能力。试题设计力求情境熟、入口宽、方法多、有层次。
高考试题很大部分是简单题与中档题,所以,学生如果基础知识不掌握,那么还谈什么能力呢?因此建议:老师们一定要引导考生在最后一个学期,加强基础知识、基本方法的巩固,保证简单题全拿分、中档题少失分。
对于难题,则要鼓励考生切不可放弃,第一小题要拿下,最后小题多角度地思考努力寻找恰当方法,尽可能多拿分,平时一定要养成不会做的难题拿步骤分的习惯。
2引导考生学会反思归纳,学会反思命题者出题意图
《考试说明》指出,试题要注重通性通法、常规方法。根据此,老师们要做的是:
首先,引导考生反思归纳,寻找通性通法常规方法。
数学需要一定的训练量,几天不练就会感觉手生,但题海战术并不可取,因为题海战术会挤占反思的时间。因此平时在做练习模拟卷时,做完题目,除了订正,还应该反思。
《考试说明》中关于空间想象能力是这样叙述的:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。
其次,引导考生反思命题人为什么出这个题,想考查什么
比如立体几何解答题为什么是这样出题的?显而易见,要考查空间想象能力。因此做完立体几何解答题后,要再审视一下,这个几何体是怎样构成的,几何元素间有哪些关系。再比如,对于很多考生而言,解析几何难于计算,为什么难?因为不会寻找与设计合理、简捷的运算途径!
解析几何解答题没有过关的学生,引导他们反思下自己的运算求解能力,平时遇到计算时,不可畏难退却,认认真真地做透几个解析几何解答题,体会其中的基本技巧,运算求解能力也就培养起来了。
3用考试说明,引导考生查漏补缺,提高复习效率
学高中数学不能靠题海战术
指导要点
找出学习成绩跟不上的原因,每周对一周学习的知识进行小结,反复阅读教材,强化基础知识。
学生在步入高中后出现学习数学困难的现象很普遍,原来初中阶段学习好的学生也可能会出现成绩下滑的情况。面对学习跟不上的情况,学生首先应该查找自己学习困难的原因。比如说有些学生盲目依赖老师提供的模式去做题,忽视基本知识基本技能的培养,陷入题海;有些学生做题时卡壳也不找问题所在;也有一部分学生学习思想松懈……正确的方法是要养成良好的学习习惯。
由于高中数学与初中数学特点上变化大,数学语言抽象化的程度突出,思维方法有理性层次的变化,知识内容整体数量剧增。高一是学生学习数学的关键时期,学生千万不能落下,应提高学习效率,注意知识迁移,听课时抓住知识本质。想学好高中数学,高一阶段必须养成良好的学习习惯,不是靠多做题就能提高成绩。学习应该有计划,课前预习、上课专心听讲、课后及时复习、独立完成作业,做题时遇到实在解决不了的问题可以问老师。
学生学好数学还要有严谨的思维能力、空间想像能力和运算能力,到周末把一周学习的内容有系统地小结。通过做例题找出自己与例题解题方法上的差距,遇到问题时多问几个为什么,把自己没懂的地方标记下来,单独问老师。
反复阅读教材,强化记忆基础知识,熟练掌握定义。一些学生对于基本概念掌握得不牢固,所以做题速度慢。有的学生想在高一放松一年以后再好好学习数学,这种想法是错误的,需要学生三年学习的知识只用两年来学习,到高考答题时一定会有漏洞。
学好高中数学的捷径
高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-l)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益
学数学的基本技巧和方法
2000多年前,中国的数学发现和应用走在世界的前列.现在中国的数学同样先进.大家都知道,生活、生产的各个领域都离不开数学,人类为了自己的生存必须学好数学,这就是我们学习数学的目的但对于中学生,很多同学学数学感到很吃力,抓不着有效的学习方法和要领.
学好数学不仅是为了学习数学知识,更主要的是通过数学知识的学习培养自己的逻辑思维能力、分析问题和解决问题的能力,等等.培养能力是学好数学的根本.
做习题就是在训练中培养这种能力,有的名家还专门寻求一些趣味数学题来进行演练.例如:伽利略的“跑马”问题;牛顿的“牛吃草”问题;鸡兔同笼问题;……这些题可以建立对数学的兴趣,加深对数学的“情感”,增强学数学的能力.
常有同学在做作业、考试时感到时间不够用,认为是运算不熟练,不能准确而迅速地得出结果,这种理解是不对的实质上,这是因为没有养成良好的学习习惯,对所学内容理解和掌握的程度不够所致.
有少数同学做题仅仅是为了完成老师布置的作业,不挨批评,所以只会代公式,依照老师讲的例题画葫芦,不注意分析,不注意一题多解,多题一解,陈题新解,这样就完全失去了做作业的实际意义,失去了逻辑思维能力和分析问题能力的训练和培养.所以应在做每一道习题前多思考该题有几种解法?条件变更后有何新结果?已知条件和结论互换还成立吗?做完每道题后都回头检查检查,特别是检查解题思路是否正确,运用了哪些知识点.不要盲目做题,常言道:“多想出智慧”,养成习惯,必有成效.
对一些基本概念、公式、定理仍要记忆,这种记忆不是死记硬背,而是在理解的基础上记忆.当然,初次学习概念、公式、定理不一定就能理解,这样就要多背几遍,特别多看看概念给出前的引导语,公式、定理的推导证明的过程,寻找概念、公式、定理的特征、特点,这样自然就一回生二回熟,熟能生巧嘛.没有记忆就没有速度,就不能提高效率.茅以升能背圆周率(π)小数点后面100位数,记忆肯定有一定的方法,如记忆圆周率后面22位并不难,可借用一首打油诗:“山顶一寺一壶酒,尔乐毋杀吾,把酒吃,酒杀尔,杀不死,乐而乐.”就是用普通话的谐音记π=3.1415926535897932384626…所以记住一些公式定理,某些问题的特点,是学好数学必备的品质之一.
另外,学习数学还要注意三个“什么”:①是什么.搞清所学的概念、知识是什么,要抓住本质特征,避免相互混淆,理清知识点之间的联系和区别;②为什么.多问几个为什么,才能加深理解,起到触类旁通的作用;③还有什么.多想想还有什么,可加强知识结构的认识,发现和挖掘新的问题.如历史上海王星的发现就是一个范例,法国人布德在计算天王星的运动轨道时,发现它老是“出轨”,是什么力量造成的呢?法国的勒维烈和英国的亚当斯经过计算同时发现了海王星,是海王星迫使天王星出轨.
学习数学,除课堂专心听讲,积极思考外,还要及时总结,经常回顾,不断的反思探索,为此,须备“三本”.
1.课堂笔记书
每次测验结束之后,同学们都应把发生的错误记录到错解本上.也许大家会说,这样太浪费时间了,但它却可以让自己找出错误的原因,避免类似的错误重犯,从而提高自己的免疫能力.
整理一道题,是一项非常艰苦的工作,不仅是一次心理上的斗争与完善,而且工作量也会很大,需要自己全身心地投入,有时知识点一环扣一环,层层扩展开去,写到最后还收不了手,于是记下自己做完这道题的解题心得.这样一来,就会书写得工工整整,分析得清清楚楚,达到整理一道题,弄懂一类题的效果.
3.典型问题荟萃本
对于学习过程中的巧思妙解以及一题多解(证)、一题多变的典型问题,以及一些综合压轴题与各类考试中的优秀题目,都应根据自己的解题感悟收集整理,并写明关键的提示、方法、技巧的小结,以便经常温习,反思,不断改进解法,这样使所学知识得以深化升华,有效地提高解题能力,同时还能培养创新意识和探索精神.
当然,最一般的方法不可缺少,就是课前预习,课堂认真听讲,课后认真复习,适当读一些课外辅助读物也是相当有必要的
高中数学
总事件,分事件,求概率。
且或非,原逆否,断真假。
线线面面,几何图形,三维空间。
XY原点,函数图形,千变万化。
不等方程,相互联立,区域求解。
数学学习方法指导讲解
要多练习,知道自己的不足,对大家的学习有所帮助,以下是查字典数学网为大家总结的高一数学学习方法,希望大家喜欢!
一、高中学生的心理特征与数学学习对策
1、高中数学课程的特点
高中一年级要学集合、逻辑、函数、数列、三角与平面向量。这些内容中理论成分所占的比重与初中数学相比空前增加。无论是概念的抽象性,论证的逻辑性,方法的灵活性,还是应用广泛性与初中数学相比,对思维水平的要求可以说是爬上了一个陡坡。高二、高三年级要学不等式的系统理论、解析几何、立体几何、排列组合、概率统计、极限、导数与复数这些内容与高一数学相比,理论成分更多,方法论成分增加的力度更大。基于这一特点,学习高中数学首先要全面、系统、深刻地掌握好数学理论的来龙去脉,同时又要分析好、理解好每个数学知识点的丰富内涵,吃透它的思想实质,有了这样一个踏实的理念基础,解题时就有可能做到用理论思维,即用所学过的数学理论与方法去观察,去分析,去解决面临的问题,这是学好高中数学的根本方法,作为教师,就应该认真去研究怎样教学生吃透理论,怎样教学生用理论思维,并且引导学生不断地总结这方面的经验,否则必然会陷入盲目性,去搞什么题型教学,甚至会滑到题海教学的边沿,这将会给学生带来严重的后果。高中三年是人体各器管剧烈发展、变化的三年,心理特征的发展变化也是如此。
2、高一年级学生的心理特征与学习对策
心理学家的研究告诉我们:高中一年级是个转折点:同学们的抽象思维慢慢开始从经验型占主导向理论型占主导转变,并且将迅速进入理论型发展的关键期,这时同学们遇事开始有了个人的见解,自主意识和独立解决问题的能力显著增强,感觉自己真正长大了。
这时,一个值得大家十分关注的问题是:教育研究表明,在关键期如果所学的知识具有一定的挑战性(挑战就是激励),并且教育与训练的方式得当,思维水平就会得到神奇般地发展!反之,如果教育内容乏味,措施无力或不当,就会贻误甚至摧残发展,给学生留下终生的遗憾。长期的教学实践和系统的学法教育的研究,还使我们获得了一个非常重要的发现:一个高中生三年的发展,不论是知识的获得,个性的陶冶,还是能力的提高,都遵循这个规律三年发展看高一,高一关键在一(上)这就是说,在高中一年级上学期所形成的心理态势、学习方式、思维习惯和知识结构将会对高中三年的发展产生重大的甚至是决定性的影响,高一(上)结束时所产生的优秀生、中等生和后进生有相当大的比例将一直持续到高中毕业甚至大学以后,这一发现进一步加强了高一年级特别是高一上学期应该是关键期中的关键期这一认识。反面的教训更应引起我们警觉:有相当多的中学生,正是由于高中一年级没有实现好这个转折,数学学习方法与习惯一直不能与高中数学的学习相适应,成绩一现下滑,最后甚至失去了学好数学的信心,给本人和家长带来了沉重的精神压力和痛苦!这是大学都不愿看到的。一个严肃的重大课题摆到了我们的面前:抓好这个关键期的教育和训练实在是太重要了!可是到底应该怎样抓呢
(1)要正视转折点,引导学生自觉地实现转轨
要向学生讲清高中数学的特点,激励他们要与时俱进,认真地学习、领悟数学学习的科学理念与以理论型抽象思维水平主导的数学学习方法,自觉地、尽快地按照数学学习的基本结构高质量地完成从初中学习到高中学习的转轨,形成良好的数学学习习惯与方法。
(2)要珍惜宝贵的关键期,力争思维水平有一个更好的发展。
关键期也是发展的最佳期,俗话说一寸光阴一寸金,抓好关键期,使自己的才能达到更好的发展,会终生受益无穷,否则时过而后学,虽勤劳而难成《学记》,这是因为人的各种器官和能力的发展都具有明显的阶段性。具体地说,高一年级的数学内容中理论成分所占比重较大,这就为理论型抽象思维水平的发展提供了契机,教育学生应当在每一次的理论(定义、定理、公式、法则)教学的全过程(试验猜测论证分析例题应用)中,在老师的指导下主动、积极地参与数学活动,力争做到四个超前,力争独立解决问题,以促进自己的抽象思维能力的发展。
3、高二年级学生的心理特征与学习对策
心理学家的研究告诉我们:高二年级同学的抽象思维水平已经进入理论型发展的成熟期,在这个阶段如果教育和训练得法、适当,思维水平还能得到很大的发展,思维能力将会进一步完善。但是,这个时期一般只有一两年时间,过了这个成熟期,理论型抽象思维能力的发展将会减缓,并且会逐渐趋于稳定(也就是说越往后,发展的余地就会越小),取而代之的将是辨证逻辑思维能力的发展。千方百计地抓好成熟期这一段极其宝贵的黄金时期,力争获得数学能力的大发展应该是高二数学教学的出发点和落脚点。
(1)首先要做好学生的思想动员,要把成熟期只有一、两年的规律告诉学生,以激起他们发展思维水平的危机感,学生动起来事情就好办了。
(2)高二数学的理论性与方法论性质较高一数学进一步提高,这就为数学能力的大发展提供了充足的精神食粮,作为教师,既是深入研究、开发每章、每节、每个例习题的智力功能,又要研究、关注每个同学的思维特点,精心设计、精心操作,帮助学生在学好数学的同时,努力促进思维水平的发展
(3)学法指导的重点仍然是:
1、怎样提高对数学理论的理解水平
2、怎样提高用理论思维的意识和水平,抓好了这两条就抓住了学好数学、用好数学的根本。
二、数学学习的科学理念
一条好的创业理念能挽救一个工厂,发展一个企业,振兴一个民族,这已是屡见不鲜的事实!同样,一条好的学习理念,能使一个学习屡屡爱挫的同学从此走向学习的成功,走上人生的康庄大道,这里向读者推荐的就是这样一条科学的数学学习理念,要讲清这个问题,首先需要弄清下面的问题:什么是真正的意义上的数学学习?它的本质与核心是什么
从所周知,数学中的知识点不是孤立的,而是紧密联系的,人们把相互联系在一起的若干个数学知识点称为数学知识结构。数学学习就是学习者在自己的头脑中不断建构(建立和造构)和完善数学知识结构的过程,心理学家把这个过程叫做数学知识的内化,内化的结果,若通逐步形成一个条理清晰的、内涵丰富的、联系紧密的、体验深刻的知识结构,学习就是成功的,反之,学习就不成功,甚至是失败的,反思这个内化的过程可以得出以下两点结论:
学习数学的过程从本质上讲就是理解数学知识及其联系的过程,理解得透彻、深刻、全面,内化的质量就高,可见,理解是数学学习的核心,当代美籍数学大师陈省身说过,数学就是理解!他之所以这样讲是基于数学具有三大特点高度的抽象性,严密的逻辑性,应用的极端广泛性和灵活性。如果离开了深入的理解,要想学懂数学、学好数学是根本不可能的,因此理解对数学学习具有极端的重要性,真正意义上的数学学习一定要把理解放在第一位,千方百计地去提高理解层次,科学的数学学习方式必然是建立在深化理解基础上的学习方式,舍此就背离了真正意义上的数学学习,是断然不可能学数学的。
第一,理解是学习者自身建构,这种理解是不可能靠别人给予的,而只可能是学习者通过参与数学活动亲身感悟出来的心得体会,美国《新数学丛书》的序言中写道:学数学最好的方法是做数学,讲的就是这个道理,为了讲清原理,使感悟能达到操作水平,分四个环节:
(1)参与问题
参与数学活动,这是获得数学理解的前提,参与又可分为主动参与和被动参与两种形态,有些同学课堂上是以听为主,力争跟上老师的思路,他虽然也有参与,但这种参与所涉及的内容和力度都是很有限的,另有一些同学,课堂上不满足于听懂,而是像数学家那样,力争自己解决问题,这种强烈的自主意识调动了他全部的身心投入到数学创造中去,这种参与内容到力度上与上一种参与相比有质的区别,他所获得的体验自然要丰富得多,深刻得多
(2)反思问题
荷兰籍国际数学教育大师弗赖登特尔认为,反思是数学活动的核心和动力,没有反思,学生的理解就不可能从一个水平升华到更高的水平,可见他把反思看得很重,很重!那么,什么是反思呢?通俗地讲就是回头看脚印就是对数学活动的全过程以及新旧知识间的联系进行反复深入的思考,从中去发现数学的真缔,因此,要想学好数学就一定要学会反思,一定要养成反思的习惯,这是学好数学的根本。
(3)概括问题
把参与与反思过程中所获得的感性认识悟化到理性认识的过程,从中发现规律,洞察本质,提高理解数学的水平。
研究表明,这个过程对学习数学、理解数学具有特殊的重要性,而这又恰恰是同学们十分困难的地方,因此,学会概括就显得更加必要。
(4)迁移问题
所谓迁移就是学习者把所获得的体验、方法、思想、观念运用到新的情境中去,这本身就是一种创造。
综上所述,要想获得高水平的理解,一定要紧紧地抓好参与-反思-概括-迁移这四个步骤,要主动参与,加强反思,学会概括,力求迁移,这可看作是学习数学的微观过程,很明显,在这个过程中,缺少任何一个环节的学习都是不完全的学习,不完全的学习是不可能获得高水平的理解的。
三、数学学习的科学方法
基于上述学习数学的科学理念,笔者向读者推荐我们在北京四中所倡导的数学学习方法,这可看作是学习数学的宏观过程。
1、课堂上力争做到四个超前
(1)、超前想:老师提出课题后,自己要尽量超在老师讲解之前,想出思路和答案
(2)、超前做:老师写出例题后,自己要尽量超在老师讲解之前,发现思路,甚至做出结果
(3)、超前总结:老师做完解答后,自己要尽量超在老师讲解之前,对解答过程进行反思、概括和总结。
(4)、超前提问题:老师作出总结后,自己要尽量超在老师讲解之前,发现问题,提出问题,研究问题
四个超前首先是针对理论课的教学提出的,也适用于例题课的教学,基基本思想是课堂上要使自己的思维处于非常积极的状态,主动地对信息进行多方位的搜集、分析、综合与转换,从这个过程中获得新的猜想、新的思路、新的感悟、新的创造。四个超前的提出和实施为数学课堂注入了活力,彻底结束了学生被动听讲的局面,强化了独立思考和自主解决问题的意识,实践证明,这种意识对实现学生数学能力的大发展和创新精神的培养都具有非常重要的作用,而且,做到了四个超前,就有可能同老师的讲解和同学们的讨论、交流进行对比,找出差距,学习就更有针对性。
2、课下要学会三种复习
及时复习每天课后,要通过阅读课本和整理笔记完成两项任务:
(1)深抠理论(概念、定理、公式、法则)
数学概念和定理具有数学的三大特性,不深抠是难以理解和掌握的,深抠主要要弄清以下四个方面的问题:
1、理论产生的背景和过程(为什么要提出这个概念?定理是怎样发现的?怎样证明的?公式是怎样推导的?)
2、理论适用的条件(什么条件下这个理论不能用?)
3、理论的结构特征(数与式子的结构特征,图形的结构特征,命题的结构特征等)
4、理论的本质与功能(要透过形式看本质并且关注功能)
(2)学抠例题
我们把例题的学习划分为三种水平:怎么做(学会做法),怎么想(学会想的方法,核心是学会用理论思维)为什么要这样想,还能怎么想(真正做到明理),要知道,会做不等于会想,会想未必明理,只有会想,而且达到了明理的水平,才算知其然更知其所以然,才能举一反三,触类旁通。
很明显,深抠的过程,就是华罗庚教授所倡导的把书读厚的过程,就是深入提示理论和例题丰富内涵的过程,就是充分汲取智力营养的过程,这个过程对学习数学而言,是不可缺少的基础性工程,是提高理解水平极为得要的步骤,更是废止题海战术的必要条件和法宝。
3、单元复习每个单元读完之后,要做到单元复习,完成以下任务:
(1)整理、串联知识点,形成单元的理论系统。
知识点经串联以后,理论发展的来龙去脉一目了然,其主干和枝杈经纬分明,容易看清基本数学思想的指导作用,它能使你站在系统的高度总揽全局,甚至能把握理念发展的去向
(2)归纳单元理论的基本思想,中心课题和数学方法,使理解达到更高的层面。
(3)筛先单元中的典型例题和习题,以利于进一步研究和以后的复习
很明显,这种系统整理知识的方法就是华罗庚教授所倡导的把书读薄的方法,这种方法能把零散的知识穿成串,结成链,形成系统,对进一步思考和理解单元知识的内涵以及提高能力作用极大,而且理论一经形成了系统,不但萌生了系统的整体功能,而且因其具有逻辑性和形象性,能长期保留记忆中
讲到这里,也许有同学会问,课后复习和单元复习下这么大功夫有必要吗
我们的回答是十分肯定的,原因是简单的,在高中阶段理性思考(用数学的理论作指导去思考)在数学的学习和解决问题的过程中起决定作用,因此,首先下功夫钻研理论,吃透精神,把劲使在刀刃上,这样做提高了理论的理解层次,解决问题时思维才会有正确的方向,否则思考必然会陷入无源之水的境地,这是高中阶段许多同学数学没有学好的根本原因。
4、考前复习与考后总结
很多同学考前不复习数学,只会找一份题做做。这样往往会使知识系统记忆不全,丢三落四,甚至平时做过的题考试中也想不起来,因此,学会考前复习具有现实意义,考前复习的任务在考试范围内:
(1)把单元的理论系统及其内涵合上书从头到尾说一遍,说不下去时,找开书看一看,继续往下说,直至能全部说清楚,这是诺贝尔物理学奖获得者华裔科学家丁肇中教授的学习方法,用这种方法复习,能做到不缺不漏,重点突出,能真正了解自己掌握理论的状况,这种说教学的方法很有效,值得提倡,你不妨试一试!
(2)把单元复习整理过的中心课题、数学思想和方法照上而的办法也说一遍,这样做不但能完整地掌握数学问题解决的课题、思想方法,而且重点突出,针对性强,省时省力。
(3)把典型例题和习题分析一遍或者做一遍。
考试后要做总结。既要总结成功的经验,更要总结失分点。失分点分为四类:1、理论的失误2、技能操作的失误3、理解思路和方法的失误4、心理因素引起的失误
要查明原因,找出改进的方法,力争做到对失分点日后为二错。华罗庚教授倡导,学数学要反复温习,以上所讲的是落实反复温习的操作方法。
5、作业要做到三项要求
(1)先复习后做作业(全面掌握教材,才能领悟每个练习题的目的,做作业才能省时、省力、质优、高效)
要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。
(2)做作业要精力集中,字迹清秀,操作规范,计算正确,力求不涂改(精力集中,做事一板一眼,是一种优秀的心理素质,对成才大有裨益,有些同学平时不注意养成,等出现问题时,再来校正就非常困难)
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
(3)出现错题,要要重做,并要查明原因
要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。总结:高一数学学习方法就为大家分享到这里了,同学们只要努力学习,积极动手,勤于动脑,多总结,善发现,一定会取得较好的成绩。
有效的数学学习方法
一、扎实打好数学基础
初中数学的基础知识是指数学教材中的概念、法则、公式、定理等必学内容以及其中蕴含的数学思想方法,还包括学习数学的经验和解题的经验,具体是以下几个方面:
1.正确理解和掌握所学的基本概念、法则、公式、定理,把握他们之间的内在联系。
例如:无意义,x的取值范围为.有的同学填x=1,这是错误的。因为这里有个概念,即分式无意义的概念和一个运算绝对值的法则,只有充分理解和掌握这一个概念和一个法则,才知道x-1=0,解出x=±1的正确答案。而且由于数学是一个连贯性很强的学科,正确掌握了绝对值以后会为我们初二学习二次根式、初三学习无理方程等打下良好的基础。因此,如果在学习某一内容或解一题时碰到了困难,那么很有可能就是因为有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题及时解决,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。
2.培养数学运算能力,养成良好的学习习惯。
每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是符合一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。
因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,从而把握运算的方向、途径和程序,一步一步仔细完成,形成运算能力。同学们要注意,如果你有上述类似跳步的现象应及时改正,不然长期下去,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,这样就会错得越多。
3.要学会一些必要的检验手段,培养自己的求异思维。
中国有句老话:“百密一疏”。疏漏是难免的,如果有多种检验手段,那么就可以做到万无一失了。那么多种检验手段如何掌握呢?这就需要我们在平时学习中有意识的训练自己的求异思维。如若数学问题要求解答的不是计算结果,而且寻求解决的方法或途径,其可运用的方法不是一种,解决的途径不止一条,而可有多种多条学生解答的方式,则不一定相同而是相异的答案。这种情况则属于求异思维的运用。例如:把正方形四等分,同学们在等分时多为这些方法:我们应该问自己还有吗?决不可以满足找出一种,实际上它的方法还有好多。你能找到吗?这就是求异思维,平时有很多题目,虽然他只有一个答案,但是如果我们考虑用多种方法去解决他的话,对于我们创造性思维的发展是十分有利的。
二、逻辑思维能力的培养。
在数学中,一个数学概念的形成,一个数学命题的建立,一个题目的解答通常要经过对概念、命题或题目进行观察、比较、分析、综合、概括、抽象、归纳、演绎的过程,这些都需要在头脑里进行思维活动,并能正确的阐述自己的思想和观点,这就是逻辑思维能力,为了提高自己的逻辑思维能力,同学们应做到以下几点:
1.严格遵守思维规律,养成严谨的思维习惯。
严格遵守思维规律,推理严谨,言必有据,这是逻辑思维的核心。这首先要求我们要准确的使用概念、定义或定理、公式,能符合逻辑的判断。我们常会碰到这样的情况,当我们在证明两角相等的时候,有一种方法叫“等边对等角”。如果我们没注意到它的前题条件是在同一三角形中的话,那么就会产生错误或者当解不出题时乱做一通,出现偷换命题、假选论据、自相矛盾、循环论证论这样一系列的问题,为了防止这类现象的发生,我们必须在平时的学习中严格思维规律,严格按照正确的思维方法解题,对学习中出现的错误,要严格对待、决不马虎,培养自己严谨求实的思维习惯。
2.重视知识的获取过程,培养抽象、概括、分析综合、推理证明能力。
老师上课在讲解公式、定理、概念时,一般都揭示他们的形成过程,而这个过程却又是同学们最容易忽视的,认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。
高中数学学习方法总结
1,心态要放平和点,不要老觉得自己数学差学不好什么的,心理作用很重要的,所以要有自己能学好的信心,相信自己的能力
2,数学最重要的就是理论+实践,理论就是上课一定认真听,把每个知识点记住并弄懂,定义什么的分清楚,然后实践就是课后多做题,这也是最重要的,只有通过不断地多做题,才能熟能生巧,加深映像,并能增强理解能力
3,课后的习题都比较简单,是根据课本知识点相应来编写的,所以那点题是不够的,最好是hi自己买一本同步的资料,题目答案对应的那种,先自己做,再对答案改错。
4,不懂得要多问老师同学,不要怕丑,这也没什么丑的,相信他们也一定会耐心乐意为你解答的
高中的解题技巧
⑶由此,作者树立的正确的观点是什么
6、常见考点
①、议论文的论点考点:
第一,分清所议论的问题及针对这个问题作者所持的看法(即分清论题和论点)。
第二,注意论点在文中的位置:
(1)在文章的开头,这就是所谓开宗明义、开门见山的写法。
(2)在文章结尾,就是所谓归纳全文,篇末点题,揭示中心的写法。这种写法在明确表达论点时大多有。所以,总之,因此,总而言之,归根结底等总结性的词语。
第三、分清中心论点和分论点:分论一般位于段首或有标志性词语:首先、其次、第三等。
第四、要注意论点的表述形式:有时题目就是中心论点。一篇议论文只有一个中心论点。
第五、通过论据来反推论点:论据是为证明论点服务的,分析论据可以看出它证明什么,肯定什么,支持什么,这就是论点。
②、议论文的论据考点:论据是论点立足的根据,一般全为事实论据和道理论据。
1、用事实作论据。事例必须真实可靠,有典型意义,能揭示事物本质并与论点有一定的逻辑联系。议论文中,对所举事例的叙述要简明扼要,突出与论点有直接关系的部分。明确论据时,不仅要知道文中哪些地方用了事实论据,还要会概括事实论据。概括时,要做到准确,必须依据论点将论据本质特点把握住,然后用确切的语言进行表述。
2、用作论据的言论,应有一定的权威性,直接引用时要原文照录,以真核对,不能断章取义;间接引用时不能曲解原意。
③、议论文的结构、层次考点:结构有:并列式结构、对照式结构、层进式结构、总分式结构。
数学学习方法如何攻克三种题目的解法
数学试题分为选择题、填空题和解答题三种题型,选择题、填空题是基础,共76分,解答题是提高分数的关键,攻克这三种题目的解法,特别是选择题的解法,它解法灵活多样,如:直接法、代入法、特值法、排除法、数形结合法等。掌握多种这些解题方法,会使解答试题速度快而准确,同时为解答最后六道解答题赢得了更多的时间。
(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
(7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
高二数学学习方法之六个概念方法
一、温故法
学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法
对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法
这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.
五、置疑法
这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。
六、创境法
如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。
高二数学学习方法之积累考试经验
本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。
数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。
高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度,其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。
数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。
那么如何抓基础呢
1、看课本;
2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。
3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。
死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。
5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。