概率论知识点总结

互联网 2024-04-01 阅读

总复习专题复习一数的认识

  一、知识梳理

  (一)整数

  1整数的意义:自然数和0都是整数。

  2自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。

  3计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  整数的读法和写法

  1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  1.回答下列问题:

  ①最小的自然数是几?有没有最大的自然数

  ②自然数都是整数吗?整数都是自然数吗

  ③零是不是自然数?零是不是整数

  ④先读出108000,再回答8在什么数位上?它包含多少个10

  ⑤个级,万级,亿级各包括哪几个数位

  ⑥从个位起,第几位是万位?第几位是亿位

  2.填空:

  ①一百万是个十万。个一百万是一千万。一亿是个一千万。

  ②十万有个万。一百万有个万。一亿有个万。

  3.①15里有个10

  ②自然数中最基本的计数单位是,26是由个1组成,65是由65个组成。

  在写出下列各数,并且读出来。

  ①最大的一位数②最小的两位数

  ③最大的九位数④最小的三位数与最大的两位数的差

  5.先说出下面各数是几位数,最高位是什么位,再读出来。

  465328707260350244018500209000000072000000000

  6.写出下面各数,并加上分节号。

  三百四十五万零六十五十万八千零九六千五百万零三十五八亿零五千

  七百零九亿二十五亿八千七百万

  7.写出下面各数:

  ①6个一万,8个一千,9个十。

  ②3个十万,9个百,6个十,5个一。

  ⑧5个百万,8个万,19个千。

  ④3个万,7个十,2个一。

  ⑤万位是8,千位是9,百位和十位都是,个位是40

  ⑥由八千七百个万五千个1组成的数。

  8.把下面各数写成用“万“作单位的数。

  ①我国的面积是9600000平方公里

  ②我省有18000000人口

  ③我国首都——北京,有7570000人

  ④一个化肥厂,一年可以生产化肥365000000公斤

  9.把下面各数四舍五入到万位。

  634857580052350060700024343001097000

  10.把下面各数四舍五入到亿位。

  4280000006680000005083000000

  12,808中,右边的8表示八个,左边的8表示八个

  13.把下列各组数用“,号按从大到小的顺序连接起来。

  ①3750937510376003751238001

  ②1230911999122001230011580

  14.a和b都是自然数。在自然数范围里,下面的式子都

  可以计算吗?如果不能,有什么条件

  1a+b②a—b③a×b④a÷b

  (二)小数

  1小数的意义

  把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  2小数的分类

  纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。

  带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。

  有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

  无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

  无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏

  3.555……0.0333……12.109109……

  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

  纯循环小数:循环节从循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:

  小数部分第一位开始的,叫做纯循环小数。例如:3.111……0.5656……

  混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222……0.03333……

  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777……简写作0.5302302……简写作。

  小数的读法和写法

  1.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  2.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  一、填空题:

  ⑴10个0.1是,10个0.01是,72个0.01是,26个0.1是。

  ⑵0.6是位小数,它表示分之。0.008是小数,它表示分之。0.15是位小数,它表示分之。

  ⑶0.4的计数单位是,它有个这样的计数单位。0.138的计数单位是,它有个这样的计数单位。

  ⑷小数点左边第二位是位,它的计数单位是,第四位是位,它的计数单位是。小数点右边第一位是位,它的计数单位是,第三位的计数单位是。

  ⑸5.376是由个1、个0.1、个0.01和6个组成的。

  ⑹在4.04中,左边的4在位,它表示,右边的4在位,它表示,左边的4是右边的4的倍。

  ⑺大于7而小于8的一位小数有个。

  二、写出下面各数:

  零点零三七一千零二点零五五点八九四百点五八

  写作:

  三、读出下面各数:

  0.052100.00932.3248.095

  读作:

  四、判断题:

  ⑴在3与4之间有无数个小数。

  ⑵小数点的未尾添上“0”或去掉“0”,小数的大小不变。

  ⑶908的未尾添上两个“0”,数的大小不变。

  八、不改变数的大小,把下面各数改写成三位小数:

  130.3000452.1

  九、化简下面各数:

  120.0004.0500

  十、按从小到大的顺序排列下面各数:

  ⑴4.634.0755.25.21

  ⑵7.5元7元5分75分

  十一、几个同学在一次短路比赛中的成绩如下:小明确规定8.40秒,小军8.37秒,小东8.04秒,小强8.34秒,请把他们的成绩按名次排列起来。

  【整数和小数练习题】

  一、填空题。

  1、五百零三亿六千四百七十写作把它四舍五入到万位约是;四舍五入到亿位约是。

  2、用三个5和三个0组成的六位数中,一个“零”都不读出的最小六位数是;只读出一个“零”的最大六位数是;读出两个“零”的六位数是。

  3、一个三位小数保留一位小数后是3.7,这个三位小数最大是,最小是。

  4、将22÷7的商用循环小数表示是,小数点右边第2011位上的数字是。

  5、一个数的小数点先向右移动一位,再向左移动三位,所得到的新数比原数少67.32,原数是。

  6、1.290保留两位小数约是,保留三位小数约是。

  7、在7.26里面有个百分之一。

  8、大于0.568小于0.668的小数有个。

  9、10.9985用“四舍五入”法保留两位小数约是。

  10、2.21的计数单位是,再加上个这样的计算单位它就等于最小的合数。

  二、判断题。

  1、小数就是比1小的数。

  2、0℃表示没有温度。

  3、一个小数,把它的小数点向右移动两位,这个数是原数的1/100。

  4、去掉小数点后面的“0”,小数的大小不变。

  5、无限小数一定是循环小数。

  6、在-9.2,-3,0,5,-29中,负数有3个。

  7、100900读作十万九百。

  8、0.10100100010000……是循环小数。

  9、0.87和0.870的大小相等,计数单位也相同。

  10、与万位相邻的两个数位是千位和十万位。

  (三)分数

  1分数的意义

  把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

  在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  2分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。

  假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

  带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  3约分和通分

  把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

  分子分母是互质数的分数,叫做最简分数。

  把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  (四)百分数

  1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

  分数的读法和写法

  1.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

  2.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

  3.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  4.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。百分号是表示百分数的符号。

  1、填空并计算。

  (1)本班有学生人,其中女生有人。女生人数占全班人数的%。

  (2)本班有学生人,今天的出勤人数是人。今天的出勤率是%。

  (3)酒店共有400间客房,今天入住300间,今天酒店的入住率是。

  学生独立计算,并说明计算方法。

  2、判断题。(对的在括号内打"√",错的在括号内打"×"。)

  (1)40是50的80%。

  (2)50是40的80%。

  (3)这批种子的发芽率高达120%。

  (4)用种子做发芽试验,发芽100粒。这批种子的发芽率是100%。

  (5)英才小学学生的近视率是6%,光明小学学生的近视率也是6%,这两所学校的近视人数是一样的。

  【分数和百分数练习题】

  一、填空题。

  1.分数单位是的所有最简真分数的和是。

  2.1的分数单位是,它再增加个这样的单位就等于最小的质数。

  3.60÷=﹕=0.75=%=

  4.千米表示1千米的,也可以表示千米的。

  5.伍婷第一周读了一本书的20%,照这样的速度,伍婷天能读完这本书。

  6.运送吨货物,分五次运完,平均每次运吨,平均每次运这批货物的,这批货物是1吨的。

  7.如果是真分数,是假分数,那么x=。

  8.的分子加上10,要使分数大小不变,分母应加上。

  9.和这两个数中,分数值较大的是,分数单位较大的是。

  10、比大,比2小,且分母是18的最简分数有个。

  二、判断题。

  1、以写成133%

  2、同学们种了105棵树苗,成活了100棵,成活率是100%。

  3、两根一样长的木料,第一根用去米,第二根用去,剩下的木料一样长。

  4、是最小的分数单位。

  5、一件羽绒服提价10%后,再降价10%,现价比原价高。

  6、一个分数的分母除以,要使分数值不变,分子应该乘以。

  7、给a(a大于0)添上“%”后是a%,它句缩小到原来的。

  8、和都是最简分数。

  9、最简分数就是分子分母都是质数。

  【数的认识练习题】

  一、填空题

  1、5060086540读作。

  2、二百零四亿零六十万零二十写作。

  3、5009000改写成用“万”作单位的数是。

  4、960074000用“亿”作单位写作;用“亿”作单位再保留两位小数。

  5、把3/7、3/8和4/7从小到大排列起来是。

  6、0,1,54,208,4500都是数,也都是数。

  7、分数的单位是1/8的最大真分数是,它至少再添上个这样的分数单位就成了假分数。

  8、0.045里面有45个。

  9、把0.58万改写成以“一”为单位的数,写作。

  10、把一根5米长的铁丝平均分成8段,每一段的长度是这根铁丝的,每段长米。

  11、6/13的分数单位是,它里面有个这样的单位。

  12、个1/7是5/7;8个是0.08。

  13、把12.5先缩小10倍后,小数点再向右移动两位,结果是。

  14、分数单位是1/11的最大真分数和最小假分数的和是。

  二、判断(对的打“√”,错的打“×”)

  1、所有的小数都小于整数。

  2、比7/9小而比5/9大的分数,只有6/9一个数。

  2、120/150不能化成有限小数。

  3、1米的4/5与4米的1/5同样长。

  4、合格率和出勤率都不会超过100%。

  5、0表示没有,所以0不是一个数。

  6、0.475保留两位小数约等于0.48。

  7、因为3/5比5/6小,所以3/5的分数单位比5/6的分数单位小。

  8、比3小的整数只有两个。

  9、4和0.25互为倒数。

  10、假分数的倒数都小于1。

  11、去掉小数点后面的0,小数的大小不变。

  12、5.095保留一位小数约是5.0。

  三、选择(将正确答案的序号填在括号里)

  1、1.26里面有()个百分之一。(1)26(2)10(3)126

  2、不改变0.7的值,改写成以千分之一为单位的数是。

  (1)0.007(2)0.70(3)7.00(4)0.700

  3、一个数由三个6和三个0组成,如果这个数只读出两个零,那么这个数是。

  (1)606060(2)660006(3)600606(4)660600

  4、把0.001的小数点先向右移动三位后,再向左移动两位,原来的数就。

  (五)数的整除

  整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

  如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

  因为35能被7整除,所以35是7的倍数,7是35的约数。

  一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。

  个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

  个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

  一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

  一个数各位数上的和能被9整除,这个数就能被9整除。

  能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

  一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

  一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

  能被2整除的数叫做偶数。

  不能被2整除的数叫做奇数。

  0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。

  一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。

  1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

  例如把28分解质因数

  几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。

概率论知识点总结

数学知识点归纳

  班级_______姓名

  知识点概括总结

  1.大数的认识:

  (1)亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万;

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类

  (1)四位分级法

  即以四位数为一个数级的分级方法。我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法

  即以三位数为一个数级的分级方法。这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。这就说明计数单位和数位的概念是不同的。

  5.数的产生:阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

  6.自然数:用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。

  7.计算工具:算盘、计算器、计算机。

  8.射线:在几何学中,直线上的一点和它一旁的部分所组成的图形称为射线。如下图所示:

  8.射线特点

  (1)射线只有一个端点,它从一个端点向另一边无限延长。

  (2)射线不可测量。

  9.直线:直线是点在空间内沿相同或相反方向运动的轨迹。

  10.线段:线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。

  11.线段特点

  (1)有限长度,可以测量

  (2)两个端点

  12.线段性质:

  (1)两点之间线段最短。

  (2)连接两点间线段的长度叫做这两点间的距离。

  (3)直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

  直线没有距离。射线也没有距离。因为,直线没有端点,射线只有一个端点,可以无限延长。

  13.角

  (1)角的静态定义

  具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  (2)角的动态定义

  一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  14.角的符号:角的符号:∠

  15.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  (1)锐角:大于0°,小于90°的角叫做锐角。

  (2)直角:等于90°的角叫做直角。

  (3)钝角:大于90°而小于180°的角叫做钝角。

  16.乘法:乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

  17.乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  10(因数)×(乘号)200(因数)=(等于号)2000(积)

  18.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

  19.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  20.平行四边形:在同一平面内有两组对边分别平行的四边形叫做平行四边形。

  21.梯形:梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

  22.除法:除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

  扩展资料

  1.“数位”与“位数”、“计数单位”均为意义不同的概念。

  “数位”是指一个数的每个数字所占的位置。数位顺序表从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。同一个数字,由于所在的数位不同,它所表示的数值也就不同。例如,在用阿拉伯数字表示数时,同一个‘6’,放在十位上表示6个十,放在百位上表示6个百,放在亿位上表示6个亿等等。

  “位数”是指一个自然数中含有数位的个数。像458这个数有三个数字组成,每个数字占了一个数位,我们就把它叫做三位数。198023456由9个数字组成,那它就是一个九位数。“数位”与“位数”不能混淆。

  计数单位:一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿……,都是计数单位。“个位”上的计数单位是“一(个),“十位”上的计数单位是“十”,“百位”上的计数单位是“百”,“千位”上的计数单位是“千”,“万位”上的计数单位是“万”等等。所以在读数时先读数字再读计数单位。

  2.自然数知识扩展

  自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。一定是整数。用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。

  3.角的其他分类

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

  4.平行线的性质

  (1)两条直线平行,同旁内角互补。

  (2)两条直线平行,内错角相等。

  (3)两条直线平行,同位角相等。

  5.平行线的判定(同一平面内)

  (1)同旁内角互补,两直线平行。

  (2)内错角相等,两直线平行。

  (3)同位角相等,两直线平行。

  (4)如果两条直线同时与第三条直线平行,那么这两条直线互相平行。

  (5)如果两条直线同时垂直于第三条直线,那么这两条直线互相平行。

  6.垂线性质

  (1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

  (2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

  (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  四年级下册

  知识点概括总结1.整数加法(1)把两个数合并成一个数的运算叫做加法。

  (2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

  (3)加数+加数=和,一个加数=和-另一个加数

  2.整数减法(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  (2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  (3)加法和减法互为逆运算。

  3.整数乘法(1)求几个相同加数的和的简便运算叫做乘法。

  (2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

  (3)在乘法里,0和任何数相乘都得0.

  (4)1和任何数相乘都的任何数。

  (5)一个因数×一个因数=积;一个因数=积÷另一个因数

  4.整数除法(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  (2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  (3)乘法和除法互为逆运算。

  (4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  (5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。

  5.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

  6.整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

  7.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

  8.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

  9.运算顺序

  (1)小数、分数、整数小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。

  (2)没有括号的混合运算同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。

  (3)有括号的混合运算先算小括号里面的,再算中括号里面的,最后算括号外面的。

  (4)第一级运算加法和减法叫做第一级运算。

  (5)第二级运算乘法和除法叫做第二级运算。

  10.加法交换律加法交换律的概念为:两个加数交换位置,和不变。

  字母公式:a+b+c=(b+a)+c

  11.加法结合律加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。

  字母公式:a+b+c=a+(b+c)

  12.乘法交换律

  乘法交换律的概念为:两个因数交换位置,积不变。

  字母公式:a×b=b×a

  13.乘法结合律乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。

  字母公式:a×b×c=a×(b×c)

  14.乘法分配律

  乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。

  字母公式:(a+b)×c=a×c+b×c

  15.小数:

  小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数,小数是十进制分数的一种特殊表现形式。

  16.小数基本性质

  小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。

  17.小数的写法

  整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。

  18.小数的读法

  一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读.例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。

  另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0。例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。

  19.小数的比较

  小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较。因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大;

  20.小数的性质:

  (1)在小数的末尾添上零或去掉零,小数的大小数不变.

  (2)小数点移动会引起小数大小发生变化.把小数点分别向右移动一位、二位、三位…位,则小数的值分别扩大10倍、100倍、1000倍……

  如果把小数点分别向左移动一位、二位、三位…则小数的值分别缩小到原来的十分之一、百分之一、千分之一…

  21.小数的近似值:

  保留小数:按要求在舍去部分最高位进行四舍五入运算。

  22.小数加法小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

  23.小数减法小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

  24.三角形

  由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。

  25.生活中的三角形物品

  雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。

  26.三角形中的线段

  (1)中线:顶点与对边中点的连线,平分三角形的面积。

  (2)高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。

  (3)角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴)

  (4)中位线:任意两边中点的连线。

  27.三角形为什么具有稳定性

  任取三角形两条边,则两条边的非公共端点被第三条边连接

  ∵第三条边不可伸缩或弯折

  ∴两端点距离固定

  ∴这两条边的夹角固定

  ∵这两条边是任取的

  ∴三角形三个角都固定,进而将三角形固定

  ∴三角形有稳定性

数学知识点归纳总结

  第一章证明(二)

  ※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。

  ※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的

  直角三角形,其中一个锐角等于30o,这它所对的直角边必然等于斜边的一半。

  ※有一个角等于60o的等腰三角形是等边三角形。

  ※如果知道一个三角形为直角三角形首先要想的定理有:

  ①勾股定理:(注意区分斜边与直角边)

  ②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半

  ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)

  ※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义)

  直线与射线有垂线,但无垂直平分线

  ※线段垂直平分线上的点到这一条线段两个端点距离相等。

  ※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

  ※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如图1所示,AO=BO=CO)

  ※角平分线上的点到角两边的距离相等。

  ※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

  角平分线是到角的两边距离相等的所有点的集合。

  ※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

  (如图2所示,OD=OE=OF)

  第二章一元二次方程

  ※只含有一个未知数的整式方程,且都可以化为(a、b、c为

  常数,a≠0)的形式,这样的方程叫一元二次方程。

  ※把(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

  ※解一元二次方程的方法:①配方法即将其变为的形式

  ②公式法(注意在找abc时须先把方程化为一般形式)

  ③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

  ※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;

  ②将二次项系数化成1;

  ③把常数项移到方程的右边;

  ④两边加上一次项系数的一半的平方;

  ⑤把方程转化成的形式;

  ⑥两边开方求其根。

  ※根与系数的关系:当b2-4ac0时,方程有两个不等的实数根;

  当b2-4ac=0时,方程有两个相等的实数根;

  当b2-4ac0时,方程无实数根。

  ※如果一元二次方程的两根分别为x1、x2,则有:。

  ※一元二次方程的根与系数的关系的作用:

  (1)已知方程的一根,求另一根;

  (2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

  ①②③

  ④⑤

  ⑥⑦其他能用或表达的代数式。

  (3)已知方程的两根x1、x2,可以构造一元二次方程:

  (4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程的根

  ※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

  ※处理问题的过程可以进一步概括为:

  第三章证明(三)

  ※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。

  ※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

  ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

  两组对边分别相等的四边形是平行四边形。

  一组对边平行且相等的四边形是平行四边形。

  两条对角线互相平分的四边形是平行四边形。

  ※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。

  菱形的定义:一组邻边相等的平行四边形叫做菱形。

  ※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

  菱形是轴对称图形,每条对角线所在的直线都是对称轴。

  ※菱形的判别方法:一组邻边相等的平行四边形是菱形。

  对角线互相垂直的平行四边形是菱形。

  四条边都相等的四边形是菱形。

  ※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

  ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

  ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

  对角线相等的平行四边形是矩形。

  四个角都相等的四边形是矩形。

  ※推论:直角三角形斜边上的中线等于斜边的一半。

  正方形的定义:一组邻边相等的矩形叫做正方形。

  ※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

  ※正方形常用的判定:有一个内角是直角的菱形是正方形;

  邻边相等的矩形是正方形;

  对角线相等的菱形是正方形;

  对角线互相垂直的矩形是正方形。

  正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):

  ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

  平行四边形

  菱形

  矩形

  正方形

  一组邻边相等

  一组邻边相等且一个内角为直角

  (或对角线互相垂直平分)

  一内角为直角

  一邻边相等

  或对角线垂直

  一个内角为直角

  (或对角线相等)

  鹏翔教图3

  ※两条腰相等的梯形叫做等腰梯形。

  ※一条腰和底垂直的梯形叫做直角梯形。

  ※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

  同一底上的两个内角相等的梯形是等腰梯形。

  ※三角形的中位线平行于第三边,并且等于第三边的一半。

  ※夹在两条平行线间的平行线段相等。

  ※在直角三角形中,斜边上的中线等于斜边的一半

  第四章视图与投影

  ※三视图包括:主视图、俯视图和左视图。

  三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。

  主视图:基本可认为从物体正面视得的图象

  俯视图:基本可认为从物体上面视得的图象

  左视图:基本可认为从物体左面视得的图象

  ※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。

  ※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。

  ※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。

  物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。

  太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。

  探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。

  ※区分平行投影和中心投影:①观察光源;②观察影子。

  眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。

  ※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。

  ①点在一个平面上的投影仍是一个点;

  ②线段在一个面上的投影可分为三种情况:

  线段垂直于投影面时,投影为一点;

  线段平行于投影面时,投影长度等于线段的实际长度;

  线段倾斜于投影面时,投影长度小于线段的实际长度。

  ③平面图形在某一平面上的投影可分为三种情况:

  平面图形和投影面平行的情况下,其投影为实际形状;

  平面图形和投影面垂直的情况下,其投影为一线段;

  平面图形和投影面倾斜的情况下,其投影小于实际的形状。

  第五章反比例函数

  ※反比例函数的概念:一般地,(k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。

  (x为自变量,y为因变量,其中x不能为零)

  ※反比例函数的等价形式:y是x的反比例函数←→←→←→←→变量y与x成反比例,比例系数为k.

  ※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值即。(通常第二种方法更适用)

  ※反比例函数的图象由两条曲线组成,叫做双曲线

  ※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;

  ②选取的点越多画的图越准确;

  ③画图注意其美观性(对称性、延伸特征)。

  ※反比例函数性质:

  ①当k0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;

  ②当k0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;

  ③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。

  ※反比例函数图象的几何特征:(如图4所示)

  P

  B

  A

  O

  P

  B

  A

  O

  图4

  点P(x,y)在双曲线上都有

  第六章频率与概率

  ※在频率分布表里,落在各小组内的数据的个数叫做频数;

  每一小组的频数与数据总数的比值叫做这一小组的频率;即:

  在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。因此,各个小长方形的面积的和等于1。

  ※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。

  用一件事件发生的频率来估计这一件事件发生的概率。

  可用列表的方法求出概率,但此方法不太适用较复杂情况。

  ※假设布袋内有黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;

  ※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x条鱼,则可依照估算出鱼的条数。(注意估算出来的数据不是确切的,所以应谓之“约是XX”)

  ※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。

  北师大版初三下册数学知识点总结

  第七章直角三角形边的关系

  ※一.正切:

  定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即;

  ①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;

  ②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;

  ③tanA不表示“tan”乘以“A”;

  ④初中阶段,我们只学习直角三角形中,∠A是锐角的正切;

  ⑤tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。

  ※二.正弦:

  定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即;

  ※三.余弦:

  定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;

  ※余切:

  定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即;

  ※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

  0o30o45o60o90osinα01cosα10tanα01—cotα—10

  (通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则

  ①;

  ②;

  ※当从低处观测高处的目标时,视线与水平线

  所成的锐角称为仰角

  ※当从高处观测低处的目标时,视线与水平线所成

  的锐角称为俯角

  ※利用特殊角的三角函数值表,可以看出,(1)当

  角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。(2)0≤sinα≤1,0≤cosα≤1。

  ※同角的三角函数间的关系:

  倒数关系:tgα·ctgα=1。

  ※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

  ◎在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有

  (1)三边之间的关系:a2+b2=c2;

  (2)两锐角的关系:∠A+∠B=90°;

  (3)边与角之间的关系:

  (4)面积公式:(hc为C边上的高);

  (5)直角三角形的内切圆半径

  (6)直角三角形的外接圆半径

  ◎解直角三角形的几种基本类型列表如下:

  图2

  h

  i=h:l

  l

  A

  B

  C

  ◎解直角三角形的几种基本类型列表如下:

  ※如图2,坡面与水平面的夹角叫做坡角(或叫做坡比)。用字母i表示,即

  ◎从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC的方位角分别为45°、135°、225°。

  ◎指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

  第二章二次函数

  ※二次函数的概念:形如的函数,叫做x的二次函数。自变量的取值范围是全体实数。是二次函数的特例,此时常数b=c=0.

  ※在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围。

  ※二次函数y=ax2的图象是一条顶点在原点关于y轴对称的曲线,这条曲线叫做抛物线。

  描述抛物线常从开口方向、对称性、y随x的变化情况、抛物线的最高(或最低)点、抛物线与x轴的交点等方面来描述。

  ①函数的定义域是全体实数;

  ②抛物线的顶点在(0,0),对称轴是y轴(或称直线x=0)。

  ③当a>0时,抛物线开口向上,并且向上方无限伸展。当a<0时,抛物线开口向下,并且向下方无限伸展。

  ④函数的增减性:

  A、当a>0时B、当a<0时

  ⑤当|a|越大,抛物线开口越小;当|a|越小,抛物线的开口越大。

  ⑥最大值或最小值:当a>0,且x=0时函数有最小值,最小值是0;当a<0,且x=0时函数有最大值,最大值是0.

  ※二次函数的图象是一条顶点在y轴上且与y轴对称的抛物线

  ※二次函数的图象是以为对称轴,顶点在(,)的抛物线。(开口方向和大小由a来决定)

  ※a的越大,抛物线的开口程度越小,越靠近对称轴y轴,y随x增长(或下降)速度越快;a的越小,抛物线的开口程度越大,越远离对称轴y轴,y随x增长(或下降)速度越慢。

  ※二次函数的图象中,a的符号决定抛物线的开口方向,a决定抛物线的开口程度大小,c决定抛物线的顶点位置,即抛物线位置的高低。

  ※二次函数的图象与y=ax2的图象的关系:

  的图象可以由y=ax2的图象平移得到,其步骤如下:

  ①将配方成的形式;(其中h=,k=);

  ②把抛物线向右(h0)或向左(h0)平移h个单位,得到y=a(x-h)2的图象;

  ③再把抛物线向上(k0)或向下(k0)平移k个单位,便得到的图象。

  ※二次函数的性质:

  二次函数配方成则抛物线的

  ①对称轴:x=②顶点坐标:(,)

  ③增减性:若a0,则当x时,y随x的增大而减小;当x时,y随x的增大而增大。

  若a0,则当x时,y随x的增大而增大;当x时,y随x的增大而减小。

  ④最值:若a0,则当x=时,;若a0,则当x=时,

  ※画二次函数的图象:

  我们可以利用它与函数的关系,平移抛物线而得到,但往往我们采用简化了的描点法----五点法来画二次函数来画二次函数的图象,其步骤如下:

  ①先找出顶点(,),画出对称轴x=;

  ②找出图象上关于直线x=对称的四个点(如与坐标的交点等);

  ③把上述五点连成光滑的曲线。

  ¤二次函数的最大值或最小值可以通过将解析式配成y=a(x-h)2+k的形式求得,也可以借助图象观察。

  ¤解决最大(小)值问题的基本思路是:

  ①理解问题;

  ②分析问题中的变量和常量,以及它们之间的关系;

  ③用数学的方式表示它们之间的关系;

  ④做数学求解;

  ⑤检验结果的合理性、拓展性等。

  ※二次函数的图象(抛物线)与x轴的两个交点的横坐标x1,x2是对应一元二次方程的两个实数根

  ※抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:

  0===抛物线与x轴有2个交点;

  =0===抛物线与x轴有1个交点;

  0===抛物线与x轴有0个交点(无交点);

  ※当0时,设抛物线与x轴的两个交点为A、B,则这两个点之间的距离:

  化简后即为:------这就是抛物线与x轴的两交点之间的距离公式。

  第三章圆

  一.车轮为什么做成圆形

  ※1.圆的定义:

  描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的圆形叫做圆;固定的端点O叫做圆心;线段OA叫做半径;以点O为圆心的圆,记作⊙O,读作“圆O”

  集合性定义:圆是平面内到定点距离等于定长的点的集合。其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。

  对圆的定义的理解:①圆是一条封闭曲线,不是圆面;

  ②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。

  ※2.点与圆的位置关系及其数量特征:

  如果圆的半径为r,点到圆心的距离为d,则

  ①点在圆上===d=r;

  ②点在圆内===dr;

  ③点在圆外===dr.

  其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。

  二.圆的对称性:

  ※1.与圆相关的概念:

  ①弦和直径:

  弦:连接圆上任意两点的线段叫做弦。

  直径:经过圆心的弦叫做直径。

  ②弧、半圆、优弧、劣弧:

  弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。

  半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。

  优弧:大于半圆的弧叫做优弧。

  劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字母表示。)

  ③弓形:弦及所对的弧组成的图形叫做弓形。

  ④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

  ⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

  ⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

  ⑦圆心角:顶点在圆心的角叫做圆心角.

  ⑧弦心距:从圆心到弦的距离叫做弦心距.

  ※2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

  ※3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

  说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:

  ①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

  上述五个条件中的任何两个条件都可推出其他三个结论。

  ※4.定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

  三.圆周角和圆心角的关系:

  ※1.1°的弧的概念:把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧.

  ※2.圆心角的度数和它所对的弧的度数相等.

  这里指的是角度数与弧的度数相等,而不是角与弧相等.即不能写成∠AOB=,这是错误的

  ※3.圆周角的定义:

  顶点在圆上,并且两边都与圆相交的角,叫做圆周角.

  ※4.圆周角定理:

  一条弧所对的圆周角等于它所对的圆心角的一半.

  ※推论1:同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等;

  ※推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;

  ※四.确定圆的条件:

  ※1.理解确定一个圆必须的具备两个条件:

  圆心和半径,圆心决定圆的位置,半径决定圆的大小.

各单元知识点梳理

  第一单元【大数的认识】

  1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。

  小结:相邻两个计数单位之间的进率是“十”

  整数部分数级…亿级万级个级数位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位计数单位…千亿百亿十亿亿千万百万十万万千百十一数字表示……………………100001000100101

  2、亿以内数的读法:

  小结:①、从高位数读起,一级一级往下读。

  ②、万级的数要按照个级的数的读法来读,再在后面加一个万字。

  ③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。

  3、亿以内数的写法:

  小结:①、从高级写起,一级一级往下写。

  ②、当哪一位上一个计数单位也没有,就在哪一位上写0。

  4、比较亿以内数的大小:

  小结:①、位数多的时候,这个数就比较大。

  ②、当这两个数位数相同的时候,我们就应该从左起的第一位比起,也就是从最高位开始比,哪个数最高位上的数大,这个数就大。

  ③、如果碰到最高位上的数相同的时候,就再比下一位,以此类推,直到我们比较出相同的数位上的那个数,哪个数大的时候,我们就可以断定这个数比较大。

  5、“万”做单位的数:

  小结:有时候,为了读写方便,我们把整万的数改写成有“万”做单位的数。

  6、求近似数:

  小结:这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于5还是等于或大于5。

  7、表示物体个数:123456…….自然数

  一个物体也没有:用0来表示。0也是自然数。

  最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

  8、十进制计数法:每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。

  9、亿以上数的读法:

  小结:亿以上的数也是从高位读起,一级一级往下读,级末尾的0不读,中间连续有几个0都只读一个0

  10、亿以上数的写法:

  小结:1、从高级写起,一级一级地往下写。2、当哪一位上一个计数单位也没有,就在哪一位上写0。

  11、“万”做单位的数:

  小结:省略亿后面的尾数,改写成用亿作单位的数,就要看千万位进行四舍五入。

  12、计算工具的认识:算盘,计算器

  13、1亿有多大?100张纸的厚度是1厘米,一亿=一百万个100,1厘米×一百万=1000000厘米=1万米

  第二单元【角的度量】

  1、直线、射线、角

  小结:没有端点,可以向两端无限延伸,这种线叫直角。

  只有一个端点,向一端无限延伸,这种线叫射线。

  直线、射线与线段有什么联系和区别

  ①、直线和射线都可以无限延伸,因此无法量出长短。

  ②、线段可以量出长度。

  ③、线段有两个端点,直线没有端点,射线只有一个端,点。

  2、角大小的比较:

  角的计量单位是“度”,用符号“°”表示。把半圆平分成180等份,每一份所对的角的大小是l度。记做1°

  角的大小与角的两边画出的长短没关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。

  3、角的分类:

  锐角<90°,直角=90°,90°<钝角<180°,平角=180°=2个直角,周角=360°=2个平角=4个平角

  4、画角步骤:

  ①画一条射线,使量角器的中心和封线的端点重合,0刻度线和射线重合。

  ②在量角器65°刻度线的地方点一个点。

  ③以画出的射线的端点为端点,通过刚画的点,再画一条射线。

  第三单元【三位数乘两位数】

  1、口算乘法:

  2、笔算乘法1:

  先算个位上的2乘以145等于290,

  再算十位上的1乘以145等145,

  两数相加等于1740

  3、笔算乘法2:

  口算法:先口算16×3=48,再在积的末尾填两个0,等于4800。

  笔算法:先笔算出16×3=48,

  再在积的末尾填两个0

  4、笔算乘法3:

  距离。

  即“点A到直线所画的垂直线段最短;点A到这条直线的距离是10厘米”

  3、画平行线:

  ①例一:怎样画平行线

  答:可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。

  ②例二:在两条平行线之间画几条与平行线垂直的线段,这些线段的长度特点

  小结:两条平行线之间的距离是相等的。

  ③例三:怎样画出一条长3厘米,宽2厘米的长方形

  提示:长方形的对边是互相平行,两条边是互相垂直的。因此可以用画垂线或平行线的方法画。

  小结:先画一条长3厘米的线段;再过线段端点画一条2厘米的垂线;再过另一个点也画一条2厘米的垂线;连接两个端点就可以了。

  4、平行四边形:

  小结:两组对边分别平行的四边形叫做平行四边形;

  只有一组对边平行的四边形叫梯形。

  当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。

  四个角都是直角的四边形叫长方形。

  四个角都是直角,并且四条边都相等的四边形叫正方形。

  5、梯形:

  小结:平行四边形容易变形,它不具有稳定性。

  从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。

  当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。

  第五单元【除数是两位数的除法】

  1、口算除法:

  2、估算除法:

  3、笔算除法:

  例一:92本连环画,每班30本,可以分别给几个班

  例二:有140本故事书,每班30本,可以分给几个班

  例三:(1)售货员给顾客21本书,顾客付了84元,那一本书多少元

  (2)我有196元,要买39元一本的书,可以买多少本?还剩多少元

  例四:礼堂每排有26个座位,四年级共有140让你,可以坐满几排?还剩几人

  小结:可以把除数看做和它接近的整十来试商!

  例五:(1)576名学生,每18人组成一个小组,可以组成多少组呢

  例五:(2)十月是学校环保月,共收集了930节废电池,平均每天收集废电池多少节

  除数是两位数的除法与除数是一位数的除法有什么相同点?有什么不同点

  相同点:

  1、除到被除数的哪一位,就把商在哪一位上面;

  2、每求出一位商,余下的数必须比除数小。

  不同点:

  除数是两位数:先用除数试除被除数的前两位数,如果前两位数比除数小,再除前三位数;

  除数是一位数:先用除数试除被除数的前1位数,如果前1位数比除数小,再除前两位数;

  4、商的变化规律:

  小结:被除数和除数同时扩大或缩小相同的倍数,(零除外),商不变。

  第六单元【统计】

  【你寄过贺卡吗?】

  培养查找、收集和处理信息以及解决问题的能力。通过阅读资料、运用统计、估算等数学知识,发现生活中存在的浪费资源的问题。正确解决因贺卡带来的环境问题。

  第七单元【数学广角】

  目标:通过观察、操作、实验、推理、交流,从数学的角度寻找解决问题的最优方案和策略。

  1、烙饼类问题策略:

  在每次只能烙两张饼,两面都要烙的情况下:

  ①烙3张饼:先烙1,2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2,3号饼的反面。

  ②烙多张饼:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2个2个的烙,最后3张饼按上面的最优方法烙,最节省时间。

  2、沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。

  3、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。

  4、“田忌赛马”问题策略:田忌用下等马对齐王的上等马,用上等马对齐王的中等马,用中等马对齐王的下等马。三场两胜,田忌胜出。

概率,叫我怎能忘记你

  想起我们学过的《概率》有关内容,我是怎么也不会忘记的。

  那天我们上数学《概率》这一课,沙老师为了让我们理解的更透彻,就给我们准备了一个箱子,里头有四个红球、两个白球,想告诉我们一个东西占的比分越大,就越可能抽到它。老师首先请了丁一笑同学上来配合,让他连抽三下。大家都定眼观看,只见丁一笑不慌不忙,微微一笑,拿出来了一个球:“白球!”沙老师连忙说道:“这证明了概率是存在变化的,就算概率低,也可能抽到,不过还是比分大的东西抽到的可能性大。你再来一次。”丁一笑就又抽了一次,结果还是白球!大家一阵哄笑,更有甚者,竟喊了出来。

  老师脸上有点挂不住了,说:“嗯,丁一笑先下去吧。让于铭岱同学来。”于铭岱边笑边走上了讲台,大家也都捂住嘴。老师为了试验能够正常进行,把一个白球又换成了红球。这样箱子里就有五个红球、一个白球了。也不知道老师是怎么惹着概率这尊大神了,它就是跟老师作对。只见于铭岱闭上眼睛,手一抽,竟然是白球!大家又是一阵惊讶,有几个调皮捣蛋的同学,趁此机会,到处乱喊。幸亏教室是抗地震的,要不然就得把教室给掀翻。

  我在下面看着,也是一阵子的偷笑:“嘿嘿,今天概率可真奇怪。是不是因为我呀,我嫌这节课太没意思了,就出现这种意外。嗯,以后要多注意注意,也许我有特异功能,能够心想事成呢。”这时于铭岱注意到了大家,也有点尴尬,便连抽三次,结果令人张目结舌。看来老师把红球调多、白球调少,还是没能成功,反而激起这概率的斗志了。不信你看,丁一笑可以说是偶然,这次可绝对不行了,这三次可都是白球!

  几个唯恐“天下”不乱的同学大喊:“老师,我总结出来了。比分越小,概率越大!”老师也是一阵子的惊讶,只好说道:“哎,今天概率在你们身上失灵了,这两人怎么就不配合我呢?刘彧媛上来。”可能是概率看老师太尴尬,也就不难为她了。于是,刘彧媛走了上去,连抽两次,终于抽到了“神龙见首不见尾”的红球。老师不禁一阵感叹:“这才对么,看来男生都不行,看人家刘彧媛,多会配合。像于铭岱那种运气,回家可以去买彩票了,保准能够中大奖,到时候请客啊。”

  就因为出了这么些小插曲,接下来的课同学们听的是异常认真,人人都掌握了《概率》有关的内容。概率,就这样让我们印象深刻。

概率与统计

  1)频率分布直方图与随机变量分布列的综合;

  (2)频率分布直方图与独立性检验的综合;

  (3)线性回归方程与非线性回归方程的实际应用;

  (4)随机变量分布列与函数的综合;

  (5)独立性检验与随机变量分布列的综合。

  【最新联考,模拟考试题】

  1、某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:

  反馈点数t12345销量(百件)/天0.50.611.41.7

  (1)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;

  (2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

  返还点数预期值区间(百分比)[1,3)[3,5)[5,7)[7,9)[9,11)[11,13)频数206060302010

  求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);

  将对返点点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望膨胀型”消费者的人数为随机变量,求的分布列及数学期望.

  参考公式及数据:①,;②.

  2、某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前样本的频率分布直方图,表1是设备改造后样本的频数分布表.

  表1:设备改造后样本的频数分布表

  质量指标值频数2184814162

  (1)请估计该企业在设备改造前的产品质量指标的平均值;

  (2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件售价240元;质量指标值落在或内的定为二等品,每件售价180元;其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.

  3、有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

  甲公司乙公司职位ABCD职位ABCD月薪/元6000700080009000月薪/元50007000900011000获得相应职位概率0.40.30.20.1获得相应职位概率0.40.30.20.1

  (1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

  (2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:

  选择意愿人员结构40岁以上(含40岁)男性40岁以上(含40岁)女性40岁以下男性40岁以下女性选择甲公司11012014080选择乙公司15090200110

  若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大

  0.0500.0250.0100.0053.8415.0246.6357.879

  附:

  4、2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

  经济损失4000元以下经济损失4000元以上合计捐款超过500元30捐款低于500元6合计

  (1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关

  (2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的分布列和数学期望.

  附:临界值表

  k02.0722.7063.8415.0246.6357.87910.828P(K2≥k0)0.150.100.050.0250.0100.0050.001

  参考公式:K2=,n=a+b+c+d.

  5、某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为且各个水果是否为不合格品相互独立.

  (1)记个水果中恰有个不合格品的概率为,求取最大值时的值;

  (2)现对一箱水果检验了个,结果恰有个不合格,以(1)中确定的作为的值.已知每个水果的检测费用为元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付元的赔偿费用

  (ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为,求;

  (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验

  6、已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.

  (1)应从甲、乙、丙三个部门的员工中分别抽取多少人

  (2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;

  7、为吸引顾客,某公司在商场举办电子游戏活动.对于两种游戏,每种游戏玩一次均会出现两种结果,而且每次游戏的结果相互独立,具体规则如下:玩一次游戏,若绿灯闪亮,获得分,若绿灯不闪亮,则扣除分(即获得分),绿灯闪亮的概率为;玩一次游戏,若出现音乐,获得分,若没有出现音乐,则扣除分(即获得分),出现音乐的概率为.玩多次游戏后累计积分达到分可以兑换奖品.

  (1)记为玩游戏和各一次所得的总分,求随机变量的分布列和数学期望;

  (2)记某人玩次游戏,求该人能兑换奖品的概率.

  8、随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

  个人所得税税率表(调整前)个人所得税税率表(调整后)免征额3500元免征额5000元级数全月应纳税所得额税率(%)级数全月应纳税所得额税率(%)1不超过1500元的部分31不超过3000元的部分32超过1500元至4500元的部分102超过3000元至12000元的部分103超过4500元至9000元的部分203超过12000元至25000元的部分20.

  (1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,y表示应纳的税,试写出调整前后y关于的函数表达式;

  (2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

  收入(元)人数304010875

  ①先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用a表示抽到作为宣讲员的收入在[3000,5000)元的人数,b表示抽到作为宣讲员的收入在[5000,7000)元的人数,随机变量,求Z的分布列与数学期望;

  ②小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少

  9、近年来,随着汽车消费的普及,二手车流通行业得到迅猛发展.某汽车交易市场对2018年成交的二手车的交易前的使用时间(以下简称“使用时间”)进行统计,得到如图1所示的频率分布直方图.在图1对使用时间的分组中,将使用时间落入各组的频率视为概率.

  图1图2

  (1)若在该交易市场随机选取3辆2018年成交的二手车,求恰有2辆使用年限在的概率;

  (2)根据该汽车交易市场往年的数据,得到图2所示的散点图,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.

  ①由散点图判断,可采用作为该交易市场二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中,):

  5.58.71.9301.479.75385

  试选用表中数据,求出关于的回归方程;

  ②该汽车交易市场拟定两个收取佣金的方案供选择.

  甲:对每辆二手车统一收取成交价格的的佣金;

  乙:对使用8年以内(含8年)的二手车收取成交价格的的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的的佣金.

  假设采用何种收取佣金的方案不影响该交易市场的成交量,根据回归方程和图表1,并用各时间组的区间中点值代表该组的各个值.判断该汽车交易市场应选择哪个方案能获得更多佣金.

  附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;

  ②参考数据:.

  10、据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小,速度越快,单位是MIPS)

  测试1测试2测试3测试4测试5测试6测试7测试8测试9测试10测试11测试12品牌A3691041121746614品牌B2854258155121021

  (1)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;

  (2)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);

  (3)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.

  11、某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.

  (1)求获得复赛资格应划定的最低分数线;

  (2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人

  (3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。

  12、“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(1,2,…,6),如表所示:

  试销单价(元)456789产品销量(件)8483807568

  已知

  .

  (1)求出的值;

  (2)已知变量,具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;

  (3)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数的分布列和数学期望.

  (参考公式:线性回归方程中,的最小二乘估计分别为,)

  13、中国大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中开设大学先修课程已有两年,两年共招收学生2000人,其中有300人参与学习先修课程,两年全校共有优等生200人,学习先修课程的优等生有60人.这两年学习先修课程的学生都参加了考试,并且都参加了某高校的自主招生考试(满分100分),结果如下表所示:

  分数a95≤a≤10085≤a9575≤a8560≤a75a60人数20551057050参加自主招生获得通过的概率0.90.80.60.50.4

  (1)填写列联表,并画出列联表的等高条形图,并通过图形判断学习先修课程与优等生是否有关系,根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系

  优等生非优等生总计学习大学先修课程没有学习大学先修课程总计

  (2)已知今年有150名学生报名学习大学先修课程,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.

  ①在今年参与大学先修课程的学生中任取一人,求他获得某高校自主招生通过的概率;

  ②设今年全校参加大学先修课程的学生获得某高校自主招生通过的人数为ξ,求Eξ.

  参考数据:

  P(K2≥k0)0.150.100.050.0250.0100.005k02.0722.7063.8415.0246.6357.879

  参考公式:K2=,其中n=a+b+c+d.

概率论在现实生活中的意义

  在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。

  概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。

  走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:

  由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。

  体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述:日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。

  大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。

  概率非常小,相当于1000亿个靠运气的考生中仅有0.874人能通过。所以靠运气通过考试是不可能的。

  因此,我们在生活和工作中,无论做什么事都要脚踏实地,对生活中的某些偶然事件要理性的分析、对待。一位哲学家曾经说过:“概率是人生的真正指南”。随着生产的发展和科学技术水平的提高,概率已渗透到我们生活的各个领域。众所周知的保险、邮电系统发行有奖明信片的利润计算、招工考试录取分数线的预测甚至利用脚印长度估计犯人身高等无不充分利用概率知识。

  如今“降水概率”已经赫然于电视和报端。有人设想,不久的将来,新闻报道中每一条消息旁都会注明“真实概率”,电视节目的预告中,每个节目旁都会写上“可视度概率”。另外,还有西瓜成熟概率、火车正点概率、药方疗效概率、广告可靠概率等等。又由于概率是等可能性的表现,从某种意义上说是民主与平等的体现,因此,社会生活中的很多竞争机制都能用概率来解释其公平合理性。

  总之,由于随机现象在现实世界中大量存在,概率必将越来越显示出它巨大的威力。

概率论重要知识点总结

  第一章 随机事件及其概率

  第一节 基本概念

  随机实验:将一切具有下面三个特点:

  (1)可重复性

  (2)多结果性

  (3)不确定性的试验或 观察称为随机试验,简称为试验,常用 表示。

  随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事 不可能事件:在试验中不可能出现的事情,记为。必然事件:在试验中必然出现的事情,记为Ω。

  样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω 表示. 一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算) 包含关系:若事件 发生必然导致事件B发生,则称B 包含A,记为 ,则称事件A与事件B 相等,记为A=B。

  事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A-B。 用交并补可以表示为 互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容 事件或互斥事件。互斥时 可记为A+B。对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质: 事件运算律:设A,B,C为事件,则有:

  (1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC

  (3)分配律:A(BC)=(AB)(AC) ABAC

  (4)对偶律(摩根律):

  第二节事件的概率

  概率的公理化体系: 第三节古典概率模型 1、设试验E 是古典概型, 其样本空间Ω 个样本点组成.则定义事件A 的概率为 的某个区域,它的面积为μ(A),则向区域 上随机投掷一点,该点落在区域 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定, 只不过把μ 理解为长度或体积即可. 第四节 条件概率 条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 乘法公式:P(AB)=P(B)P(A)=P(A)P(B)全概率公式:设 第五节事件的独立性 两个事件的相互独立:若两事件A、B 满足P(AB)= 相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)= 相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)= 两两独立独立的性质:若A 均相互独立总结:

  1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场 合,它将扮演主要的角色。

  2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用, 应牢固掌握。

  3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。

  第二章 一维随机变量及其分布

  第二节 分布函数

  分布函数:设X 是一个随机变量,x 为一个任意实数,称函数 内的概率分布函数的性质:

  (1)单调不减;

  (2)右连续;

  (3) 第三节离散型随机变量 离散型随机变量的分布律:设 (k=1,2,…)是离散型随机变量 为离散型随机变量X的分布律,也称概率分布. 当离散性随机变量取值有限且概率的规律不明显时,常用表格形式表示分布律。

  分布律的性质:

  (1) 离散型随机变量的概率计算:

  (1)已知随机变量X 的分布律,求X 的分布函数;

  (2)已知随机变量X的分布律, 求任意随机事件的概率;

  (3)已知随机变量X 的分布函数,求X 的分布律 三种常用离散型随机变量的分布:

  1.(0-1)分布:参数为p 的分布律为

  2.二项分布:参数为n,p的分布律为 重独立重复实验中,事件A发生的概率为p,记X 次实验中事件A发生的次数,

  3.泊松分布:参数为λ的分布率为 第四节连续型随机变量 连续型随机变量概率密度f(x)的性质 连续型随机变量的概率计算:

  (1)已知随机变量X 的密度函数,求X 的分布函数;

  (2)已知随机变量X的分布函数,求X 的密度函数;

  (3)已知随机变量X的密度函数, 求随机事件的概率;

  (4)已知随机变量X的分布函数,求随机事件的概率; 三种重要的连续型分布:1.均匀分布:密度函数 N(0,1)称为标准正态分布.标准正态分布的重要性在于,任何一个一般的正态分布都可以通过线性变换转化为标准正态分布,然后再计算概率. 第五节随机变量函数的分布 离散型:在分布律的表格中直接求出; 连续型:寻找分布函数间的关系,再求导得到密度函数间的关系;注意分段函数情况可能需 要讨论,得到的结果也可能是分段函数。 第三章多维随机变量及其分布 第一节 二维随机变量的联合分布函数 联合分布函数 ,表示随机点落在以(x,y)为顶点的左下无穷 矩形区域内的概率。

  联合分布函数的性质:

  (1)分别关于x 单调不减;

  (2)分别关于x 第二节二维离散型随机变量 联合分布律: ij 第三节二维连续性随机变量 联合密度: 第四节边缘分布 二维离散型随机变量的边缘分布律:在表格边缘,对应概率相加求出; 二维连续性随机变量的边缘密度:先求出边缘分布函数,在求导求出边缘密度 第六节 随机变量的独立性 独立性判断: 取值互不影响,可认为相互独立;

  (2)根据独立性定义判断 独立性的应用:

  (1)判断独立性;(2)已知独立性,由边缘分布确定联合分布第四章 随机变量的数字特征 离散型随机变量数学期望的计算 xfEX 常见分布的数学期望和方差两点分布,二项分布,泊松分布,均匀分布,正态分布,指数分布。

大学概率论知识点总结

  第一章随机事件和概率

  1、随机事件的关系与运算

  2、随机事件的运算律

  3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)

  4、概率的基本性质

  5、随机事件的条件概率与独立性

  6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)

  7、全概率公式的思想

  8、概型的计算(古典概型和几何概型)

  第二章随机变量及其分布

  1、分布函数的定义

  2、分布函数的充要条件

  3、分布函数的性质

  4、离散型随机变量的分布律及分布函数

  5、概率密度的充要条件

  6、连续型随机变量的性质

  7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)

  8、随机变量函数的分布(离散型、连续型)

  第三章多维随机变量及其分布

  1、二维离散型随机变量的三大分布(联合、边缘、条件)

  2、二维连续型随机变量的三大分布(联合、边缘和条件)

  3、随机变量的独立性(判断和性质)

  4、二维常见分布的性质(二维均匀分布、二维正态分布)

  5、随机变量函数的分布(离散型、连续型)

  第四章随机变量的数字特征

  1、期望公式(一个随机变量的期望及随机变量函数的期望)

  2、方差、协方差、相关系数的计算公式

  3、运算性质(期望、方差、协方差、相关系数)

  4、常见分布的期望和方差公式

  第五章大数定律和中心极限定理

  1、切比雪夫不等式

  2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)

  3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)

  第六章数理统计的基本概念

  1、常见统计量(定义、数字特征公式)

  2、统计分布

  3、一维正态总体下的统计量具有的性质

  4、估计量的评选标准(数学一)

  5、上侧分位数(数学一)

  第七章参数估计

  1、矩估计法

  2、最大似然估计法

  3、区间估计(数学一)

  第八章假设检验(数学一)

  1、显著性检验

  2、假设检验的两类错误

  3、单个及两个正态总体的均值和方差的假设检验。

概率论知识点总结

  第一章 概率论的基本概念

  1. 随机试验

  确定性现象:在自然界中一定发生的现象称为确定性现象。

  随机现象: 在个别实验中呈现不确定性,在大量实验中呈现统计规律性,这种现象称为随机现象。

  随机试验:为了研究随机现象的统计规律而做的的实验就是随机试验。 随机试验的特点:

  1)可以在相同条件下重复进行;

  2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能

  结果;

  3)进行一次试验之前不能确定哪一个结果会先出现;

  2. 样本空间、随机事件

  样本空间:我们将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。 样本点:构成样本空间的元素,即E中的每个结果,称为样本点。 事件之间的基本关系:包含、相等、和事件(并)、积事件(交)、差事件(A-B:包含A不包含B)、互斥事件(交集是空集,并集不一定是全集)、对立事件(交集是空集,并集是全集,称为对立事件)。事件之间的运算律:交换律、结合律、分配率、摩根定理(通过韦恩图理解这些定理)

  3. 频率与概率

  频数:事件A发生的次数 频率:频数/总数

  概率:当重复试验的次数n逐渐增大,频率值就会趋于某一稳定值,这个值就是概率。 概率的特点:1)非负性。2)规范性。3)可列可加性。

  概率性质:1)P(空集)=0,2)有限可加性,3)加法公式:P(A+B)=P(A)+P(B)-P(AB)

  4. 古典概型

  学会利用排列组合的知识求解一些简单问题的概率(彩票问题,超几何分布,分配问题,插空问题,捆绑问题等等)

  5. 条件概率

  定义:A事件发生条件下B发生的概率P(B)=P(AB)/P(A) 乘法公式:P(AB)=P(B)P(A) 全概率公式与贝叶斯公式

  6. 独立性检验

  设 A、B是两事件,如果满足等式P(AB)=P(A)P(B)则称事件A、B相互独立,简称A、B独立。

  第二章.随机变量及其分布

  1. 随机变量

  定义:设随机试验的样本空间为S={e}. X=X(e)是定义在样本空间S上的单值函数,称X=X(e)为随机变量。

  2. 离散型随机变量及其分布律

  三大离散型随机变量的分布 1)(0——1)分布。E(X)=p, D(X )=p(1-p)

  2)伯努利试验、二项分布 E(X)=np, D(X)=np(1-p)

  3) 泊松分布 P(X=k)= (?^k)e^(- ?)/k! (k=0,1,2,……)

  E(X)=?,D(X)=

  注意:当二项分布中n 很大时,可以近似看成泊松分布,即np=

  3. 随机变量的分布函数

  定义:设X是一个随机变量,x是任意的实数,函数 F(x)=P(X≤x),x属于R 称为X的分布函数 分布函数的性质:

  1) F(x)是一个不减函数

  2) 0≤F(x)≤1

  离散型随机变量的分布函数的求法(由分布律求解分布函数)

  连续性随机变量的分布函数的求法(由分布函数的图像求解分布函数,由概率密度求解分布函数)

  4. 连续性随机变量及其概率密度

  连续性随机变量的分布函数等于其概率密度函数在负无穷到x的变上限广义积分 相反密度函数等与对应区间上分布函数的导数 密度函数的性质:1)f(x)≥0

  2) 密度函数在负无穷到正无穷上的广义积分等于1

  三大连续性随机变量的分布: 1)均与分布 E(X)=(a+b)/2 D (X)=[(b-a)^2]/12

  2)指数分布 E(X)=θ D(X)=θ^2

  3)正态分布一般式(标准正态分布) 5. 随机变量的函数的分布

  1)已知随机变量X的 分布函数求解Y=g(X)的分布函数

  2)已知随机变量X的 密度函数求解Y=g(X)的密度函数 第三章 多维随机变量及其分布(主要讨论二维随机变量的分布)

  1.二维随机变量

  定义 设(X,Y)是二维随机变量,对于任意实数x, y,二元函数

  F(x, Y)=P[(X≤x)交(Y≤y)] 称为二维随机变量(X,Y)的分布函数或称为随机变量联合分布函数离散型随机变量的分布函数和密度函数 连续型随机变量的分布函数和密度函数

  重点掌握利用二重积分求解分布函数的方法

  2.边缘分布

  离散型随机变量的边缘概率

  连续型随机变量的边缘概率密度

  3.相互独立的随机变量

  如果X,Y相互独立,那么X,Y的联合概率密度等于各自边缘的乘积

  5. 两个随机变量的分布函数的分布

  关键掌握利用卷积公式求解Z=X+Y的概率密度 第四章.随机变量的数字特征

  1.数学期望

  离散型随机变量和连续型随机变量数学期望的求法 六大分布的数学期望

  2.方差

  连续性随机变量的方差 D(X)=E(X^2)-[E (X )]^2 方差的基本性质:

  1) 设C是常数,则D(C)=0

  2) 设X随机变量,C是常数,则有

  D(CX)=C^2D(X)

  3) 设X,Y是两个随机变量,则有

  D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(Y))} 特别地,若X,Y不相关,则有D(X+Y)=D(X)+ D(Y) 切比雪夫不等式的简单应用 3. 协方差及相关系数

  协方差:Cov(X ,Y )= E{(X-E(X))(Y-E(Y))} 相关系数:(x,y)/√D(X) √D(Y)

  当相关系数等于0时,X,Y 不相关,Cov(X ,Y )等于0 不相关不一定独立,但独立一定不相关

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

开题报告技术路线

实习总结300字