数列题型及解题方法

互联网 2024-04-01 阅读

数学考试重点题

  【一】计算题:〔此题共有5道小题,每题4分,总分值20分〕

  1、我们规定(x)表示不大于x的最大偶数,并且规定x=x-(x),例如(3.2)=2,3.2=1.2。两个数a、b满足:a+(b)=123.4,a+b=12.34,那么a是_______。

  2、定义等和数列:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。

  数列{an}是等和数列,且a1=2,公和为5,那么a18的值为________,这个数列的前n项和Sn的计算公式为__________。

  3、U2合唱团的4名成员柏纳、艾吉、埃达姆、劳瑞赶往演出现场,他们途中要经过一座小桥。当他们赶到桥头,天已经黑了,周围没有灯。一次最多可以两人一起过桥,过桥人手里必须有手电筒,而且手电筒不能用仍的方式传递。4人的步行速度都不同,假设两人同行,以速度较慢的人为准。伯纳需要1分钟过桥,艾吉需要2分钟过桥,埃达姆需要5分钟过桥,劳瑞需要10分钟过桥。请问:最短时间为多少=____________。

  4、某校高二年级共有六个班级,现从外地转进4名学生,要安排到该年级的两个班级且每班安排2名,那么不同的安排方案种数为多少___________。

  5、数列{an}满足a1=1,an=a1+2a2+3a3++(n-1)an-1(n2),那么{an}的通项an=。

  【二】填空题〔此题共有4道小题,每题5分,总分值20分〕

  6、一只电子跳蚤每次向前或向后跳动1厘米,它跳了10步,前进了6厘米,问跳动的方法有___________次(用数字作答)。

  7、从长度分别为1,2,3,4,5的这五条线段中,任取三条的不同取法共有n种,在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为那么为____________。

  8、一个岛上有两种人:一种人总说真话的骑士,另一种是总是说假话的骗子。一天,岛上的2019个人举行一次集会,并随机地坐成一圈,他们每人都声明:我左右的两个邻居是骗子。第二天,会议继续进行,但是一名居民因病未到会,参加会议的2019个人再次随机地坐成一圈,每人都声明:我左右的两个邻居都是与我不同类的人。问有病的居民是_________(骑士还是骗子)。

  【三】简答题:〔此题共有5道小题,每题8分,总分值40分,说明理由并写出过程。〕

  9、求所有正整数x、y,满足方程x2-3xy=2019。

  10、计算

  11、计算被342除的余数是多少?(整除时写0)

  12、有甲、乙、丙三种商品,买甲3件,乙7件,丙1件,共需3.15元,买甲4件,乙10件,丙1件,共需4.20元,那么甲、乙、丙各买1件需________元钱

  13、p、q为不同的非零自然数,和也是非零自然数,那么p+q

  14、时钟的表盘上按标准的方式标有1,2,3,12这12个数,在其上任意做n个120的扇形,每一个覆盖4个数,每两个覆盖的数不全相同,如果从这任做n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值

  【四】解答题:〔总分值10分〕

  15、请你从01、02、03、、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

  (1)请你说明:11这个数必须选出来;

  语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道〝书读百遍,其义自见〞,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。(2)请你说明:37和73这两个数当中至少要选出一个;

  这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多那么材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(3)你能选出55个数满足要求吗

  课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底〝记死〞的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一那么名言警句即可。可以写在后黑板的〝积累专栏〞上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多那么名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故〝贮藏〞在学生脑中,自然会出口成章,写作时便会随心所欲地〝提取〞出来,使文章增色添辉。

数列题型及解题方法

2020数学复习名题选萃排列、组合、二项式定理

  一、选择题

  1.小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为

  []

  A.26B.24

  C.20D.19

  2.计划在某画廊展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有

  []

  3.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有

  []

  A.24个B.30个

  C.40个D.60个

  4.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有

  []

  A.150种B.147种

  C.144种D.141种

  5.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有

  []

  A.90种B.180种

  C.270种D.540种

  -(a1+a3)2的值为

  []

  A.1B.-1

  C.0D.2

  二、填空题

  7.乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有________种(用数字作答).

  8.在(3-x)7的展开式中,x5的系数是________.(用数字作答)

  9.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为________.

  10.若(x+1)n=xn+…+ax3+bx2+1(n∈N),且a∶b=3∶1,那么n=________.

  11.从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各2台,则不同的选法有________种(结果用数值表示).

  12.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有________个(用数字作答).

  13.在(1+x)6(1-x)4的展开式中,x3的系数是________(结果用数值表示).

  14.有8本互不相同的书,其中数学书3本,外文书2本,其它书3本.若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有________种(结果用数值表示).

  16.从集合{0,1,2,3,4,5,7,11}中任取3个元素分别作直线方程Ax+By+C=0中的A、B、C,所得经过坐标原点的直线有________条(结果用数值表示).

  17.(x+2)10(x2-1)的展开式中x10的系数为________(用数字作答).

  =________.

  19.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有________种(用数字作答).

  三、解答题

  21.已知i,是正整数,且1<i≤.

  (2)证明(1+>(1+n)

  参考答案提示

  一、选择题

  1.D2.D3.A4.D5.D6.A

  提示:6.本小题考查二项式定理的有关知识.解法1:由二项式

  二、填空题

  7.2528.-1899.2n(n-1)

  10.1111.35012.3213.-8

  14.144015.416.3017.17918.4

  19.12.提示:解法1:若A、B之间间隔6垄,如果A在左,B在右,A的左边可以有2垄、1垄、0垄,相应B的右边有0垄、1

  种.若A、B之间间隔7垄,若A在左,B在右,A的左边可以有1

  (种).解法2:用插空的方法.中间的6垄与两旁的A、B两垄先排好,A的两边有2个空,B的两边有2个空,这4个空选2个空种植其他2

  三、解答题

  21.

数学奥数讲座自然数列趣题

  本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它。

  例1小明从1写到100,他共写了多少个数字“1”

  解:分类计算:

  “1”出现在个位上的数有:

  1,11,21,31,41,51,61,71,81,91共10个;

  “1”出现在十位上的数有:

  10,11,12,13,14,15,16,17,18,19共10个;

  “1”出现在百位上的数有:100共1个;

  共计10+10+1=21个。

  例2一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字

  解:分类计算:

  从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);

  从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);

  第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是:

  9+180+3=192(个)。

  例3把1到100的一百个自然数全部写出来,用到的所有数字的和是多少

  解:(见图5—1)先按题要求,把1到100的一百个自然数全部写出来,再分类进行计算:

  如图5—1所示,宽竖条带中都是个位数字,共有10条,数字之和是:

  (1+2+3+4+5+6+7+8+9)×10

  =45×10

  =450。

  窄竖条带中,每条都包含有一种十位数字,共有9条,数字之和是:

  1×10+2×10+3×10+4×10+5×10+6×10+7×10

  +8×10+9×10

  =(1+2+3+4+5+6+7+8+9)×10

  =45×10

  =450。

  另外100这个数的数字和是1+0+0=1。

  所以,这一百个自然数的数字总和是:

  450+450+1=901。

  顺便提请同学们注意的是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力。比如说这道题就还有更简洁的解法,试试看,你能不能找出来

数学真题精选专题试卷方程

  一.选择题(共9小题)

  1.(?随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是

  2.(?兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为

  3.(?滨州)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为

  4.(?重庆)一元二次方程x2﹣2x=0的根是

  5.(?广安)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是

  6.(?山西)我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x(x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是

  7.(?广州)已知2是关于x的方程x2﹣2+3的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为

  8.(?济宁)三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为

  9.(?烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为

  二.解答题(共21小题)

  10.(?巴彦淖尔)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱

  11.(?福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:

  品名黄瓜茄子批发价(元/千克)34零售价(元/千克)47

  当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克

  12.(?福州)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支

  13.(?徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱

  14.(?娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.

  小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”

  小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”

  问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元

  (2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元

  15.(?曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:

  类别/单价成本价销售价(元/箱)甲2436乙3348

  (1)该商场购进甲、乙两种矿泉水各多少箱

  (2)全部售完500箱矿泉水,该商场共获得利润多少元

  16.(?黄冈)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元

  17.(?永州)已知关于x的一元二次方程x2+x+﹣2有一个实数根为﹣1,求值及方程的另一实根.

  18.(?大连)解方程:x2﹣6x﹣4=0.

  19.(?东莞)解方程:x2﹣3x+2=0.

  20.(?梅州)已知关于x的方程x2+2x+A﹣2=0.

  (1)若该方程有两个不相等的实数根,求实数A的取值范围;

  (2)当该方程的一个根为1时,求A的值及方程的另一根.

  21.(?河南)已知关于x的一元二次方程(x﹣3)(x﹣2)=

  (1)求证:对于任意实数方程总有两个不相等的实数根;

  (2)若方程的一个根是1,求值及方程的另一个根.

  22.(?泰州)已知:关于x的方程x2+2+﹣1=0

  (1)不解方程,判别方程根的情况;

  (2)若方程有一个根为3,求值.

  23.(?潜江)已知关于x的一元二次方程x2﹣4x+.

  (1)若方程有实数根,求实数取值范围;

  (2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数值.

  24.(?福州)已知关于x的方程x2+(2)x+4=0有两个相等的实数根,求值.

  25.(?南充)已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.

  (1)求证:方程有两个不相等的实数根;

  (2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)

  26.(?咸宁)已知关于x的一元二次方程﹣x+2=0.

  (1)证明:不论何值时,方程总有实数根;

  (2)何整数时,方程有两个不相等的正整数根.

  27.(?东营)年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,年的均价为每平方米5265元.

  (1)求平均每年下调的百分率;

  (2)假设年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)

  28.(?淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.

  (1)若将这种水果每斤的售价降低x元,则每天的销售量是100+200x斤(用含x的代数式表示);

  (2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元

  29.(?珠海)白溪镇年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,年达到82.8公顷.

数学手抄报一种非常好的数学解题方法

  考试前,尤其是面临重要考试时,老师都会谆谆告诫莘莘学子们一条非常重要的答题方法--------会答的先答,不会答的后答。事实证明,这个方法是使考试获得成功、出奇制胜的法宝。但到了今天,这件法宝在许多同学身上不灵了,考试居然达不到平时写作业的水平,让同学们确实倍感困扰。三轮解题法就是解决怎样在考试时发挥出自己最佳水平的一种方法。它的理念是以我为主,以发挥出考试最佳状态为本,按照分轮次解题的要求,构建自信、有序。可控的机制平台,拓展自我进步、成功的轻松空间,实现应试能力的跨越。三轮解题法要通过以下七点实现:

  1.对考试成功的标志要有明确的认识

  初中生身经无数次的考试,有成功也有失败,有考顺之时,也有别扭之日。那么什么是考试成功的标志呢?有人说是分数,有人说是名次,还有人讲只有超过某人才算……其实分数也有绝对值和相对值,绝对值是拿你自己的分数与及格线、满分线等比较的结果。相对值是将你自己的分数放在个人、班级、年级、全市等参照系中衡量其相对位置的结果。正是由于选择的参照系不同,有的同学越比信心越足,越比干劲越大,越比越乐观;而有的同学则越比越没信心,越比对自己越怀疑,越比热情越低。我的观点是,考试成功的标志有两条:一是,只要将自己的水平正常发挥出来了,就是一次成功的考试。二是,不要横向与其他同学比,要纵向自己与自己比。按着前述《良性循环学习法》中提到的,只要将第一类问题消灭到既定目标,就是一次成功的考试。

  2.确定考试目标

  有资料显示,每年中考考砸的考生约占25%。因此考试前确定目标时,虽然你心中有了上述两条考试成功的标志,但是对于第一条,你千万不要以为我可以100%的将自己的水平发挥出来,这才叫正常发挥,更不要幻想超常发挥。而应该按三层递进模式实施你的目标。三层递进模式就是:第一要保证不考砸。第二要正常发挥。正常发挥就是将自己的水平发挥出80%,发挥出80%已经很不简单了,发挥出80%无疑是没考砸。第三要向更高标准迈进,就是在保证已发挥出80%以后,再向发挥100%努力,再向超常发挥进发。虽然看似简单的三层,但我提出的是:不砸→80%→100%→超常。你若考试一上来,就想100%发挥,超常发挥,就可能出现全盘皆输的惨局。那么保证实施三层递进模式的一种最佳方法就是——三轮解题法。

  3.第一轮答题要敢于放弃三轮解题法的第一轮是,当你从前往后答题时,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间被困住卡壳了,就放。这是非常关键的一点。为什么。“会答的先答,不会答的后答’到了考场就做不到呢?要害在会与不会之间,难在会与不会的判定上。你想,会的题这很清楚。不会的题也很明了。但恰恰有些题是你乍一看会,一做起来就卡壳,或者我不能立即得出结论,我需要看一看,思考思考、演算演算、琢磨琢磨……真是欲行不能,欲罢不忍。每每都是在这不知不觉中丧失了宝贵的时间,每次考试都觉得时间不够用,稀里糊涂地败下阵来。“会答的先答,不会答的后答”作为一条原则是颠扑不破的真理。但若同时将它当作考试方法,因为它仅是定性地指出了方向,定量分析不清楚,缺乏可操作性,所以出现有人用它灵,有人用它不灵;有时灵,有时就不灵的现象。尤其是重要的考试,每题必争,每分必夺,哪道题都不想轻易放弃,哪一问都想攻下来,哪一分都不想丢的时候,就往往失灵。而“三轮解题法’是一种定量的方法,量化清楚,可操作性强。当第一轮做完,有一个重要的环节——

  4.敢于休息30秒

  当按着会做的则解,不会做的则放,卡壳的也放的方法,从前做到最后一道题之后,要敢于休息30秒。而且这个休息一定是老老实实地休息。比如,可以看看窗外的自然景观,树在摇曳,鸟在飞翔等。也可以想想自己喜欢的流行歌曲、电视剧等,当然不能想得太远,如果你想出十集去,考试早结束了。还可以采取一些深呼吸放松法、自我深度松驰法、积极的自我暗示法等。当然也可以什么都不想,就是闭目养神。在休息过程中要注意一点,采用什么休息方法悉听尊便,但千万不要想自己没做上来的某道题。

  为什么要用敢于休息30秒的“敢于”两字呢?是因为绝大多数同学每每都觉得时间不够,哪还敢挤出时间休息呀!其实恰恰相反,因为考试是高度的耗氧活动,对脑力、体力消耗很大,经过一段时间便会出现疲劳的现象,此时若意志力来坚持,效率自然不高。经过休息就会使脑力得到恢复,使体力得到补充,经休息后再投入到解题过程中会高效发挥,所以敢于休息的同学反而时间就够了,这就是辩证法。这也正是俗话所说“磨刀不误砍柴工”的道理。敢于休息30秒也是心理状态提升的体现。考试时有的同学一听到其他同学快速翻页的声响就着急,眼睛的余光一看别的同学答得较快就发慌……现在我能做到不为所动,不被所引,我还敢于主动休息。急答出现差错,稳答一次成功,孰优孰劣是不言自明的道理。心理状态的提升需要一个磨炼过程。敢于休息30秒,就是心理状态走向成熟的开始,因此一定要敢于休息。休息后进人第二轮。

  5.第二轮查缺补漏

  第一轮将会做的题都做了,休息后还有没有会做的题了呢?回答是肯定的。依据有两条:一条是实践的依据;一条是理论的依据。

  任何一名高三学生几乎都曾有过这样的考试经历,在考试过程中某道题不会,不得不放弃了,但当答到后边某处时,忽悠一下想起前边那道题该怎么做了。或者是答到后边某道题,或者看见一道题的某句话、某个符号等,立刻唤醒了记忆,产生了顿悟,激发了灵感等,前边那道题就做出来了。这就是实践的依据。

  考试时,从答题开始到达到考试最佳思维状态即图中①点处需要一个上升过程,但是达到最佳思维状态后,有些人还能下来,如碰到一道4分左右的小题,自以为能做出来,但抠了半天就是做不出来,心情一团糟,这时绝不是最佳状态了,这时思维状态就下降了。有人一落千丈,如图中①点至②点沿虚线至④点处所示。也有人下降后还能升上去,再度达到最佳思维状态,如图中②点至③点处。而我们希望的理想状态是,角大点,尽快达到最佳思维状态,当达到最佳思维状态后,一直持续到考试结束。由于第一轮将会做的题做了,这时你的思维状态在0~①点之间,而决不会是①~②~④点之间。因此,经休息后仍旧有会做的题。

  实践和理论都证实,做过第一轮后仍旧会有能解出来的题。那么这时如第一轮所述,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间卡壳了,就放。这样从前做到最后一道题,接下来要再次敢于休息30秒。怎样休息前文已有详述不再赘述。

  6.第三轮换思路解题

  休息以后,要从前到后检查一遍自己做过的题。检查通过后,从理论上讲,你已经将自己的水平100%的发挥出来了,但实际上是80%。因为你检查虽然通过了,可还存在你没检查出来或检查错了的可能性,所以说是80%。虽然是80%,但已经很不简单了。在一次考试中,能将自己的水平发挥出80%就是一次成功的考试。你看体育竞赛,你观奥运会,有多少运动员,有多少运动队积多年训练之精华,蓄埋藏4年之心愿,只为了场上一搏。这一搏往往是发挥出平时训练水平的80%就可以取得胜利,就可以拿牌。对发挥出80%,你一定认识到,我的水平已经发挥出来了,我就是这个水平。我对得起自己,对得起父母,对得起……但如果这时考试还没结束,还有时间,也没有必要检查第二遍,这时决不能满足80%,要向100%进发,向超常发挥努力,做那些没做上来的题。但是做是做不出来了,已经做过两轮都没做出来,说明是难点,是“硬骨头”。对于难点和“硬骨头”采用常规做法已经不行了。这时要攻,要向难点和“硬骨头”发起总攻。那么如何攻呢?可用换思路解题法来攻。

  换思路解题法是基于这样的思考,当你解题时,仅仅将题做对是远远不够的,只有知道此题有几种解法,哪种是优化的解法才算优秀。许多人都曾有过这样的经历,解题时想起了这题出自哪章哪节,老师讲这点时是如何强调的,此题是考哪个或哪几个知识点,老师出这题想考什么……此时答这题感觉非常有把握,解题非常顺。这就是灵感。其实灵感也没有什么神秘,谁都曾经在考试过程中迸发过灵感的火花。当然如果你甚至能看透某题的陷阱和迷惑在哪里,你就是顶尖高手了。总之,此时已是不攻白不攻,不得白不得,攻一步进一寸,得1分是1分的时候了。但要换思路,看看哪题能攻下来攻哪题,哪点能拿下来拿哪点。想想它是出自哪章哪节?老师想考哪个知识点?各点之间是什么关系……这时要放飞你的记忆能力、领悟能力、多向联想能力、逆向思维能力、发散思维能力、创新能力等,多方位、多角度、多层次地思考。这时新的思路就有可能被打开,兴奋点就可能被激活,灵感的火花就可能如年三十的礼花一样在空中绽放。同学们,大胆尝试吧!你曾经有过的灵感定会一次次再现。

  7.变三轮解题法为自定理

  三轮解题法是一种全新的考试答题方法,是经过实践验证的科学、合理、有效的考试答题方法。认识掌握并运用了三轮解题法的同学都取得了不同程度的进步。但应用三轮解题法却要因人”而异,因科而异。若想灵活运用三轮解题法,第一要认识它的科学性、合理性、有效性;第二要实践,没有多次的实践是不能掌握这样一种全新的方法的;第三要总结,看看自己究竟是三轮好,还是二轮妙,或是四轮高。中间的两次休息,多长时间为宜。总之,绝不是一轮到底,不管会不会的题都要跟它拼上三、五回合的从小学沿用至今的考试答题方法了。这是一种全新的分轮次解题方法。对不同的科目,应用三轮解题法也应有所差异。比如数、理、化等是这样的三轮。而语文则应该是阅读题之前是一轮,做完就要检查结束。然后阅读题是一轮,最后一轮全身心地写作文。理想状态是作文写完,剩余时间少于5分钟。如果剩多了,说明你前边的时间分配不合理,要改进。英语、历史。政治、地理等的三轮也要因科而异。这样,经过实践一总结一再实践一再总结循环往复,什么时候形成一套你自己得心应手运用自如的分轮次解题法,什么时候你用自己的名字将其命名为某某定理,这时你才是真正掌握了三轮解题法。此时你的精力主要用于过程的完善,过程的完成,忽略结果,你就能取得胜利。这时你才会感到考试是无憾的、考试是轻松的、考试是愉快的、考试是幸福的。考试会使你信心越来越强,考试会使你思维越来越活跃、考试会使你的精神面貌焕然一新、考试会使你的应试能力实现跨越。

数学学习方法如何攻克三种题目的解法

  数学试题分为选择题、填空题和解答题三种题型,选择题、填空题是基础,共76分,解答题是提高分数的关键,攻克这三种题目的解法,特别是选择题的解法,它解法灵活多样,如:直接法、代入法、特值法、排除法、数形结合法等。掌握多种这些解题方法,会使解答试题速度快而准确,同时为解答最后六道解答题赢得了更多的时间。

  (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

  (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

  (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

  (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

  (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

  (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

  (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

  (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

  高二数学学习方法之六个概念方法

  一、温故法

  学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

  二、操作法

  对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。

  三、类比法

  这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

  四、喻理法

  为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.

  五、置疑法

  这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。

  六、创境法

  如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。

  高二数学学习方法之积累考试经验

  本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

  数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

  高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度,其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。

  做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

  复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

  数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。

  那么如何抓基础呢

  1、看课本;

  2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。

  3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化

  与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

  4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。

  观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。

  死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。

  5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。

数学解题六步骤

  在求解应用题时,从问题出发,想到公式,找出解决这个问题所必备的条件。对公式中提出的条件,要想到题目中的已知条件,从已知条件中找到或求出来。即:看清问号想公式,公式定下找条件,条件都在题目里,草稿简图显关系,计算过程要细心,切记验算不能忘。

  如:小明计划读故事书720页,已经读了5天,平均每天读60页,其余的6天读完,平均每天要读多少页

  一看问号?要我们求什么?必须看清楚。要求出平均每天读多少页

  二想公式。平均每天读多少页=余下的页数÷读的天数,因此必须知道余下的页数和读的天数(6天)这两个条件。

  三找条件。从题目中找公式中的除数和被除数,想方法解出他们。要求出余下多少页,就要知道计划读多少页(720页)和已经读了多少页,要求出已经读了多少页,需要知道已经读的天数(5天)和平均每天读的页数(60页)。

  四画简图。在草稿纸上把题目中的已知条件的数量关系用线段长短表示出来。

  五列算式。根据二、三、四步,把有关的数字列入公式,计算出来,已经读了多少页:60×5=300(页)。余下多少页:720-300=420(页)。平均每天读多少页=余下的页数÷读的天数:420÷6=70(页)。就得到题目中的问号啦!

  六记验算。所有的结果都必须进行验算,还应用不同的方法进行验算。

  以上六步骤是按解一般应用题的思路进行分析的。任何一个问题都可以找到相应的公式来表示他们之间的数量关系,这是解应用题的核心。数学是无处不在的,让我们热爱数学,学好数学吧!

数学解题思路

  17.想法则

  用来说明运算规律(或方法)的文字,叫做法则。

  子比分母少16。求这个分数

  由“一个分数乘以5,是分子乘以5分母不变”,结果是分子的5倍比3倍比分母少16。知

  分子的5-3=2(倍)是2+16=18,分子为18÷2=9,分母为9×5-2=43或9×3+16=43。

  18.想公式

  证明方法:

  以分母a,要加(或减)的数为

  (2)设分子加上(或减去)的数为x,分母应加上(或减去)的数为y。

  19.想性质

  例11992年小学数学奥林匹克试题初赛(C)卷题6:有甲、乙两个多少倍

  200÷16=12.5(倍)。

  例2思考题:三个最简真分数,它们的分子是连续自然数,分母大于10,且它们最小公分母是60;其中一个分数的值,等于另两个分数的和。写出这三个分数。

  由“分母都大于10,且最小公分母是60”,知其分母只能是12、15、20;12、15、30;12、15、60。

  由“分子是连续自然数”,知分子只能是小于12的自然数。

  满足题意的三个分数是

  (二)第400个分数是几分之几

  此题特点:

  (2)每组分子的排列:

  假设某一组分数的分母是自然数n,则分子从1递增到n,再递减到1。分数的个数为n+n-1=2n-1,即任何一组分数的个数总是奇数。

  (3)分母数与分数个数的对应关系,正是自然数与奇数的对应关系

  分母:1、2、3、4、5、……

  分数个数:1、3、5、7、9、……

  (4)每组分数之前(包括这组本身)所有分数个数的和,等于这组的组号(这一组的分母)的平方。

  例如,第3组分数前(包括第3组)所有分数个数的和是32=9。

  10×2-1-6=13(个)位置上。

  分别排在81+7=88(个),81+13=94(个)的位置上。

  或者102=100,100-12=88。

  100-6=94,88+6=94。

  问题(二):由上述一串分数个数的和与组号的关系,将400分成某数的平方,这个数就是第400个分数所在的组数400=202,分母也是它。

  第400个分数在第20组分数中,400是这20组分数的和且正好是20的平方无剩余,故可断定是最后一个,即

  若分解为某数的平方有剩余,例如,第415个和385个分数各是多少。

  逆向思考,上述的一串分数中,分母是35的排在第几到第几个

  352-(35×2-1)+1

  =1225-69+1=1157。

  排在1157-1225个的位置上。

  20.由规则想

  例如,1989年从小爱数学邀请赛试题:接着1989后面写一串数字,写下的每一个数字都是它前面两个数字的乘积的个位数字。

  例如,8×9=72,在9后面写2,9×2=18,在2后面写8,……得到一串数:1989286……

  这串数字从1开始往右数,第1989个数字是什么

  先按规则多计算几个数字,得4……显然,1989后面的数总是不断重复出现286884,每6个一组。

  (1989-4)÷6=330……5

  最后一组数接着的五个数字是28688,即第1989个数字是8。

  21.用规律

  例1第六册P62第14题:选择“+、-、×、÷”中的符号,把下面各题连成算式,使它们的得数分别等于0、1、2、3、4、5、6、7、8、9。

  (1)22222=0

  (2)22222=1

  ……

  (10)22222=9

  解这类题的规律是:

  先想用两、三个2列出,结果为0、1、2的基本算式:

  2-2=0,2÷2=1;

  再联想2-2÷2=1,2×2÷2=2,2÷2+2=3,……

  每题都有几种选填方法,这里各介绍一种:

  2÷2+2÷2-2=0

  2÷2×2-2÷2=1

  2-2+2÷2×2=2

  2×2+2÷2-2=3

  2×2×2-2-2=4

  2-2÷2+2×2=5

  2+2-2+2×2=6

  2×2×2-2÷2=7

  2÷2×2×2×2=8

  2÷2+2×2×2=9

  例2第六册P63题4:写出奇妙的得数

  2+1×9=

  3+12×9=

  4+123×9=

  5+1234×9=

  6+12345×9=

  得数依次为11、111、1111、11111、111111。此组算式的特点:

  第一个加数由2开始,每式依次增加1。第二个加数由乘式组成,被乘数的位数依次为1、12、123、……继续写下去

  7+123456×9=1111111

  8+1234567×9=11111111

  9+12345678×9=111111111

  10+123456789×9=1111111111

  11+1234567900×9=11111111111

  12+12345679011×9=111111111111

  ……

  很自然地想到,可推广为

  (1)当n=1、2时,等式显然成立。

  (2)设n=k时,上式正确。当n=k+1时

  k+1+123…k×9

  =k+1+[123…(k-1)×10+k]×9

  =k+1+123…(k-1)×9×10+9k

  =[k+123…(k-1)×9]×10+1

  根据数学归纳法原理,由(1)、(2)可断定对于任意的自然数n,此等式都成立。

  例3牢记下面两个规律,可随口说出任意一个自然数作分母的,所有真分数的和。

  (1)奇数(除1外)作分母的所有真分数的和、是(分母-1)÷2。

  =(21-1)÷2=10。

  22.巧想条件

  比5小,分母是13的最简分数有多少个。

  7~64为64-(7-1)=58(个),去掉13的倍数13、26、39、52,余下的作分子得54个最简分数。

  例2一个整数与1、2、3,通过加减乘除(可添加括号)组成算式,若结果为24这个整数就是可用的。4、5、6、7、8、9、10中,有几个是可用的。

  看结果,想条件,知都是可用的。

  4×(1+2+3)=24

  (5+1+2)×3=24

  6×(3+2-1)=24

  7×3+1+2=24

  8×3÷(2-1)=24

  9×3-1-2=24

  10×2+1+3=24

  23.想和不变

  无论某数是多少,原分数的分子与分母的和7+11=18是不变的。

  而新分数的分子与分母的和为1+2=3,要保持原和不变,必同时扩大18÷3=6(倍)。

  某数为7-6=1或12-11=1。

  24.想和与差

  算理,原式相当于

  求这个分数。

  25.想差不变

  分子与分母的差41-35=6是不变的。新分数的此差是8-7=1,要保持原差不变,新分数的分子和分母需同时扩大6÷1=6(倍)。

  某数为42-35=7,或48-41=7。

  与上例同理。23-11=12,3-1=2,12÷2=6,

  某数为11-6=5或23-18=5。

  分子加上3变成1,说明原分数的分子比分母小3。当分母加上2后,分子比分母应小3+2=5。

  26.想差的1/2

  对于任意分母大于2的同分母最简真分数来说,其元素的个数一定是偶数,和为这个偶数的一半。分母减去所有非最简真分数(包括分子和分母相同的这个假分数)的个数,差就是这个偶数。

  例1求分母是12的所有最简真分数的和。

  由12中2的倍数有6个,3的倍数有4个,(2×3)的倍数2个,知所求数是

  例2分母是105的,最简真分数的和是多少

  倍数15个,(3×5)、(5×7)、(3×7)的倍数分别是7、3、5个,(3×5×7)的倍数1个。知

  105-[(35+21+15)-(3+5+7)+1]=48,

  48÷2=24。

  27.借助加减恒等式

  个数。

  若从中找出和为1的9个分数,将上式两边同乘以2,得

  这九个分数是

  28.计算比较

  例如,九册思考题:1÷11、2÷11、3÷11……10÷11。想一想,得数有什么规律

  ……

  可见,除数是11,被除数是1的几倍(倍数不得大于或等于11),商

  17÷11=(11+6)÷11=11÷11+6÷11

  凡商是纯循环小数的除式,都有此规律;不是纯循环小数的,得数不存在这一规律。

  不难发现,它们循环节的位数比除数少1,循环数字和顺序相同,只是起点不同。

  只要记住1÷7的循环节数字“142857”和顺序,计算时以最大商的数字为起点,顺序写出全部循环节数字,即可。

  29.由验算想

  例如,思考题:计算1212÷101,……,3939÷303,你能从计算中得到启发,很快说出下面各题的得数

  4848÷202,7575÷505,……

  3939÷303

  =(3030+909)÷303

  =3030÷303+909÷303

  =10+3=13

  备课用书这种由“除法的分配律”解,要使三年级学生接受,比较困难。

  若从“除法的验算”推导

  由3939÷303=,

  商百位上的3和13相乘才可得39,商个位上的3也必须与13相乘得39,除数是13确定无疑。显然,在被除数上面写上除数,使位数对齐,口算很快会得出结果。

  所以商是12。

  30.想倍比

  31.扩缩法

  例如,两数和是42,如果其中一个数扩大5倍,另一个数扩大4倍,则和是181。求这两个数。

  若把和,即这两个数都扩大4倍,则得数比181小,因为原来扩大5倍的那个数少扩大了1倍。差就是那个数。

  181-42×4=13

  42-13=29

  若把两数都扩大5倍,结果比181多了原来扩大4倍的那个数。

  42×5-181=29,42—29=13。

  若把181缩小4倍,则得数比42大。因为其中的一个数先扩大5倍,又

  若把181缩小5倍,得数比42小。因为先扩大4倍的那个数,又缩小5

  最佳想法:

  两数扩大的倍数不同,181不会是42的整倍数。相除就把多扩大1倍的那个数以余数形式分离出来。

  181÷42=4余13。

  另个数可这样求

  32.分别假设

  例如,1992年中学数学奥林匹克试题初赛(C)卷题5:把一个正方形的一边减少20%,另一边增加2米,得到一个长方形,它与原来的正方形面积相等。那么,正方形的面积是多少平方米。

  设正方形的边长为1,另一边增加的百分数为x,则

  (1-1×20%)×(1+x)=1,

  正方形边长2÷25%=8(米),

  面积8×8=64(平方米)。

  此日志通过TT-空间极速版一键转载生成。

中国古代数学解题方法

  1.早在甲骨文中出现的十进位制记数方法,就是早期的数学计算思想;商代的骨尺和牙尺上也有寸和分的刻度,主要的意义在便于计算。《九章算术》中开放紧纳性的表述系统,是按个别到一般的方法建立起来的,是由一个或几个问题归纳出基本规律和一般解法,再把各种算法进行综合,得到解决某领域中各种问题的方法,再把各领域的方法形成一章,汇成《九章算术》,形成抽象化的数学计算思想2.《周易》中的六十四别卦,其核心是八经卦,它的符号表示实际上是一种特殊的数表,是由一堆数字组合而成,有限的符号在不同的位置上相互配置,组合生成无穷多的意义,形成早期的组合的数学思想,是离散数学的基础。

  3.《礼记》中指出初等教育要有数的教育,《周礼》中提到数的教育要有日常生活中的计算。成为早期的培养人才的“经世致用”的数学实用思想。《周髀算经》中系统的把数学应用在天文地理中,突出了数学的实用思想。

  4.三国时代的魏人刘徽为《九章算术》作注解10卷时提出的“出入相补原理”成为我国最早的数形结合思想,尤其重要的是他所创造的“割圆术”使极限思想在世界上开了先例。

  5.庄子天下篇中有一句话是“一日之锤,日取其半,万世不竭”首次提出了“无限的思想”进而出现了无限向有限转化的辩证思想。

  与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

  课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

  课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。概括中国古代数学思想有如下的特点:经世致用的实用思想;算法化、模型化、数值化、离散化的计算思想;朴素的辩证思想;极限思想;数形结合思想等。成为数学问题解决的常用的思想方法。

数学解题技巧

  有些同学问我:曹双双,你数学怎么做得这么快啊,而且正确率也挺高的,有什么技巧吗。

  记得在一二年级的时候,其实我做数学作业挺慢的,为此我老爸整天有种恨铁不成钢的感觉。但慢慢慢慢地速度越来越快了,而且质量也提高了,嘿嘿,我还真有自己的小窍门……其实说穿了也没什么,无非是两点,第一、多练习;第二、多思考,多想想这道题还有没有别的更简单、更快捷的方法可以解答。先说说第一点:多练习。熟话说“勤能补拙、贵在坚持”,这方法是最简单也是最有效的。多练习不仅可以温故而知新,还可以锻炼速度。你可以人为的给自己设置“门槛”,从一开始的五分钟一题慢慢到十分钟三题再……逐渐缩短每道题占用的时间,长期坚持下来,速度就自然而然提高了,你觉得呢?再说说第二点吧:多思考。每做完一道有一定挑战性的题目,事后一定要注意总结思考,看看能否探索出一种更简单、更快捷的方法来解答,这样坚持不懈地做下去,考试的时候你就能比别的同学节省大量的时间用来复查试卷,提高得分率。俗话说:条条大路通罗马,你还别说,这方法挺好的,呵呵,成功的路不止一条啊。这是我老爸特意教给我的,美其名曰“举一隅而反三隅”。

  刚开始的时候,我并不在意这种方法,还是象勤劳的小蜜蜂、孺子牛一样,吭哧吭哧地用着一力降十会的方法挥霍着大把的时间解题。俺老爸注意到后你猜他是怎么做的?他老人家从大处着眼,小处着手和我玩起了“算24点”,于是小小的扑克牌、汽车牌照…一切带数字的东东都成了我们的道具,一种解法、两种解法……

  从此乐此不疲啊,唉,还是俺老爸的技术含量高啊!佩服,佩服!回过头来再想想,其实真正说起来,数学并不难,难的是,你对她是接受还是排斥,一旦产生了兴趣一切都迎刃而解,而且所有的学科都是如此,同学们,你说对吗

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

邀请同学们聚餐邀请函

礼仪课自我介绍