高中数学三角函数知识点

互联网 2024-04-01 阅读

高中数学三角函数知识点

高中数学三角函数知识点总结

  sinαsinβ = [cos(α-β)-cos(α+β)] /2

  cosαcosβ = [cos(α+β)+cos(α-β)]/2

  sinαcosβ = [sin(α+β)+sin(α-β)]/2

  cosαsinβ = [sin(α+β)-sin(α-β)]/2

高中数学三角函数知识点

高中数学三角函数知识点总结

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角函数题型分类总结

  同学们进入高二要求背诵的公式也逐渐增多,为此数学网整理了高二数学三角函数公式,请参考。

  1.万能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  2.辅助角公式

  asint+bcost=(a^2+b^2)^(1/2)sin(t+r)

  cosr=a/[(a^2+b^2)^(1/2)]

  sinr=b/[(a^2+b^2)^(1/2)]

  tanr=b/a

  3.三倍角公式

  sin(3a)=3sina-4(sina)^3

  cos(3a)=4(cosa)^3-3cosa

  tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]

  4.积化和差

  sina*cosb=[sin(a+b)+sin(a-b)]/2

  cosa*sinb=[sin(a+b)-sin(a-b)]/2

  cosa*cosb=[cos(a+b)+cos(a-b)]/2

  sina*sinb=-[cos(a+b)-cos(a-b)]/2

  5.积化和差

  sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

  sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

  cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

  cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

三角函数题型归纳总结

  各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次:

  第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。

  第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。

  第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。

  高考数学三角函数题型解法

  1.三角函数恒等变形的基本策略。

  (1)常值代换:特别是用"1"的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。

  (2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β= - 等。

  (3)降次与升次。(4)化弦(切)法。

  (4)引入辅助角。asinθ+bcosθ= sin(θ+ ),这里辅助角 所在象限由a、b的符号确定, 角的值由tan = 确定。

  2.证明三角等式的思路和方法。

  (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

  (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

  3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

  4.解答三角高考题的策略。

  (1)发现差异:观察角、函数运算间的差异,即进行所谓的"差异分析"。

  (2)寻找联系:运用相关公式,找出差异之间的内在联系。

  (3)合理转化:选择恰当的公式,促使差异的转化。

高中数学三角函数知识点

高中数学三角函数知识点总结

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)

高中数学三角函数知识点

高中数学三角函数知识点总结

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/

高中数学三角函数知识点

高中数学三角函数知识点总结

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

高中数学三角函数知识点

高中数学三角函数知识点总结

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (—a)=-tanα

  sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  sin(π-α) = sinα

  cos(π-α) = -cosα

  sin(π+α) = -sinα

  cos(π+α) = -cosα

  tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  诱导公式记背诀窍:奇变偶不变,符号看象限

  万能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

高中数学三角函数知识点

高中数学三角函数知识点总结

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan

高中数学三角函数知识点

高中数学三角函数知识点总结

  1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  证:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得证

  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

《教育漫话》经典语录

九上化学知识点归纳