七年级上册数学课件

互联网 2024-04-01 阅读

七年级上册导航

  [第一单元]这就是我[第二单元]漫游语文世界[第三单元]感受自然[第四单元]探索月球奥秘[第五单元]我爱我家[第六单元]追寻人类起源

  今日推荐

  在平平淡淡的学习、工作、生活中,大家总少不了接触作文吧,借助作文可以提高我们的语言组织能力。相信许多人会觉得作文很难...

  在日复一日的学习、工作或生活中,许多人都写过作文吧,写作文可以锻炼我们的独处习惯,让自己的心静下来,思考自己未来的方...

  七年级上册第3单元作文:感受自然1我生在厦门,长在厦门,因此厦门的美丽风景,我再熟悉不过了,不信,跟我瞧瞧去!厦门这座...

  在日常生活或是工作学习中,许多人都写过作文吧,作文根据写作时限的不同可以分为限时作文和非限时作文。那么你知道一篇好的.

  无论是在学校还是在社会中,许多人都有过写作文的经历,对作文都不陌生吧,作文一定要做到主题集中,围绕同一主题作深入阐述...

  在日常学习、工作或生活中,大家最不陌生的就是作文了吧,作文是一种言语活动,具有高度的综合性和创造性。相信很多朋友都对...

七年级上册数学课件

北师版初一数学上册课件

  教学目标:

  1.通过折叠棱柱,发展学生空间观念,积累数学活动经验.

  2.了解棱柱的相关概念,认识棱柱的某些特性.

  教学重点:

  棱柱的特性.

  教学难点:

  某些平面图形是否可以折叠成棱柱的思索.

  教学过程:

  一、设疑自探

  1.创设情景,导入新课

  我们已经学过了一些几何体,它们是由什么组成的?它的展开图形是什么样?一个平面图形可以折叠成什么样的几何体呢

  2.让学生拿出各自制作的三棱柱,四棱柱,五棱柱,通过观察和测量回答:

  (1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱,五棱柱呢

  (2)三棱柱有几个侧面?侧面是什么图形?四棱柱,五棱柱呢

  (3)这三种棱柱侧面的个数与地面多边形的边数有什么关系

  (4)三棱柱有几条恻棱?它们的长度之间有什么关系?四棱柱,五棱柱呢

  结合同学们的回答,共同总结出棱柱的性质:

  棱柱的所有侧棱都相等;棱柱的上、下底面是相同的图形;侧面都是长方形.

  3.课堂练习:P11 1.

  4.展示正六棱柱模型.(底面边长都是5厘米,侧棱长4厘米)

  二.解疑合探

  (1)这个六棱柱一共有多少个面?它们分别是什么形状?那些面的形状、面积完全相同

  (2)这个六棱柱一共有多少条棱?它们的长度分别是多少

  展示下列图形:

  先想一想,再折一折,哪些图形可以围成正方体?哪些图形不能围成正方体

  结合以上问题,全班进一步分组讨论:

  你能否指出具有什么特征的平面图形可以折成正方体?什么样的图形不能

  (教师参与小组讨论,并进行适当指导)

  总结结论:

  凡符合以上基本图形或变式图形的平面图形都可以折叠成正方体.

  三.质疑再探:

  上例中为什么是旋转90度

  探索并思考:什么样的平面图形可以折叠成三棱柱,四棱柱,五棱柱

  进一步思考什么样的平面图形可以折叠成棱柱

  四.运用拓展:

  1、课堂练习 P11 想一想

  2、小结

  ①.棱柱的相关概念及特征

  ②.什么样的平面图形叠成三棱柱,四棱柱,五棱柱等.

  ③作业

  P10 习题1.3

  每人用纸制作一个完整的正方体以备下节课使用.

七年级数学

  根据课程改革的要求,初中数学教学中通过课题学习,学生将经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的应用价值,发展自己数学思维能力,获得一些研究问题、解决问题的经验和方法,从而培养学生探究数学学习的兴趣,体验学习的成功。

  在八年级的数学(上)中的《整式的乘除》中,我们遇到了《平方差与完全平方公式》的教学任务。根据过往学生的认识过程来看,学生的定向思维就认为(a+b)2=a2+b2,而且还是根深蒂固的,那么如何在教学中转变或是加深学生对此公式的正确认识呢?在课前,我想了很多方法,也参考一些兄弟学校的做法,我尝试用两种教学方法做个试验,看学生的接受情况如何。

  方法一:数形结合——面积与代数恒等式的学习

  从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的试验中发现、归纳公式。本课中,本想让学生课前先做好纸片,然后再堂上小组合作,探究公式。但是按学生的学习习惯来看,这课前的要求怕难落实,因而我改用了课件,用学生看屏幕观察和小组合作完成学卷的方式完成教学。

  教学环节:(学生观察、小组合作归纳)问题1:首先请你仔细观察下图,你能用下面的图解释两数和乘以它们的差公式吗

  问题2:请你组员一起合作,仿照问题1的方法,

  表示(a+b)2与(a-b)2的几何图形。

  就这两个问题,学生用了一节课完成。中间的学生活动,老师还是讲的比较多,因此答案也比较一律了,当然这与学生的学习能力有关。不过,学生总算明白两公式的几何意义了,这也算是本节课最大的收获了。但学生对公式的理解还是“半熟”。

  方法二:数值验算——利用数值计算归纳公式

  此方法可以说比较老套,但是对学生来说,可能容易接受。我的设计是这样的:

  请把五组数的值分别输入下图的两个数值转换机,比较两个输出结果,你发现什么?这说明了什么

七年级上册数学课件

北师版初一数学上册课件

  教学目标:

  1、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。

  2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳能力。

  3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生在合作学习中体验到:数学活动充满着探索和创造。使学生获得成功的体验,增强自信心,提高学习数学的兴趣。

  教学的重点:

  引导学生用一个平面去截一个正方体的切截活动,体会截面和几何体的关系,充分让学生动手操作、自主探索、合作交流。

  教学的难点:

  从切截活动中发现规律,并能用自己的语言来表达。能应用规律来解决问题。

  课程过程:

  一、设疑自探

  1.创设情景,导入新课

  复习面的分类和面面相交的结果.

  集体回答或发表个人见解.

  为理解截面的边数作铺垫.

  2、学生探索

  由实物引入截(切)面的意义.用教具演示,将一个几何体切开得到截(切)面,让学生观察这两个面的特点。

  了解到这两个截面完全一样的.

  自然过渡到用一个平面去截正方体.

  问题的提出:“你注意到了吗?妈妈在将黄瓜切成一片片时,得到的截面是什么样的?…,如果用一个平面去截一个正方体得到的截面可又将是怎样的呢?分组讨论,比一比那一组的结论多”激发竞争意识.

  实施“想?做?想”的学习策略,让学生先想一想,并把猜想的结果记录下来,的猜想.

  培养学生的想象力.

  分组实践操作:“与同伴交流,看看别人截处的面是什么?他为什么得到与你不同的截面?他是怎样得到的?你还能截得什么样的截面?”比一比那一组讨论的结果与实践一致的多.表扬表现好的.培养集体荣誉感.

  分组通过实践操作证实小组的讨论的结果,发表、展示自己的研究成果.(由于时间关系,选择有代表性的小组展示)

  培养学生的合作交流能力、对问题的探究能力及表达能力和竞争意识.

  二、解疑合探

  帮助学生完成由实际体验到空间想象的过渡,提高想象能力.并总结各种截面是如何截出来的,它们有什么规律。

  观察,想象,思考截面的边那些面相交的来.

  新问题:“刚才切、截一个正方体就得多个不同的截面,那么如果截一个圆柱体呢?或是截一个其它棱柱体呢?你又会得到一些什么样的截面?”

  动手操作、探究、交流。

  三.质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四、运用拓展

  练习、作业布置、解答课堂练习.学生能独立完成课堂练习。

七年级上册数学课件

北师版初一数学上册课件

  第一课时

  教学目标

  1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处

  2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

  3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

  教学重点:

  认识一些基本的几何体,并能描述这些几何体的特征

  教学难点:

  描述几何体的特征,对几何体进行分类。

  教学过程:

  一、设疑自探

  1.创设情景,导入新课

  在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体

  2.学生设疑

  让学生自己先思考再提问

  3.教师整理并出示自探题目

  ①生活常见的几何体有那些

  ②这些几何体有什么特征

  ③圆柱体与棱柱体有什么的相同之处和不同之处

  ④圆柱体与圆锥体有什么的相同之处和不同之处

  ⑤棱柱的分类

  ⑥几何体的分类

  4.学生自探(并有简明的自学方法指导)

  举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体

  说说它们的区别

  二.解疑合探

  1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探

  2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类

  2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

  三.质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四.运用拓展:

  1.引导学生自编习题。

  请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征

  2.教师出示运用拓展题。

  (要根据教材内容尽可能要试题类型全面且有代表性)

  3.课堂小结

  4.作业布置

  五、教后反思

  第二课时

  教学目标

  1、知识:认识点、线、面的运动后会产生什么的几何体

  2、能力:通过点、线、面的运动的认识几何体的产生什么

  3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

  教学重点:

  几何体是什么运动形成的

  教学难点:

  对“面动成体”的理解

  教学过程:

  一、设疑自探

  1.创设情景,导入新课

  我们上节课认识了生活中的基本几何体,它们是由什么形成的呢

  2.学生设疑

  点动会生成什么几何体

  线动会生成什么几何体

  面动会生成什么几何体

  3.教师整理并出示自探题目

  教师根据学生的?疑情况梳理、归纳、细化得出自探题目(自探要求)

  4.学生自探(讨论)

  二.解疑合探

  举例分析那些几何体由什么运动形成的

  那些图形运动可以形成什么几何体

  三.质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四.运用拓展:

  1.引导学生自编习题。

  2.教师出示运用拓展题。

  (要根据教材内容尽可能要试题类型全面且有代表性)

  3.课堂小结

  4.作业布置

  五、教后反思

初一上册数学课件

  教学目的:

  (一)知识点目标:

  1.了解正数和负数是怎样产生的。

  2.知道什么是正数和负数。

  3.理解数0表示的量的意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

  2.会用正、负数表示具有相反意义的量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的热情。

  教学重点:知道什么是正数和负数,理解数0表示的量的意义。

  教学难点:理解负数,数0表示的量的意义。

  教学方法:师生互动与教师讲解相结合。

  教具准备:地图册(中国地形图)。

  教学过程:

  引入新课:

  1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好

  内容:老师说出指令:

  向前两步,向后两步;

  向前一步,向后三步;

  向前两步,向后一步;

  向前四步,向后两步。

  如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

  讲授新课:

  1.自然数的产生、分数的产生。

  2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

  3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

  举例说明:3、2、0.5、 等是正数(也可加上“十”)

  -3、-2、-0.5、- 等是负数。

  4、数0既不是正,也不是负数,0是正数和负数的分界。

  0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

  5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

  巩固提高:练习:课本P5练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗

  课后作业:课本P7习题1.1的第1、2、4、5题。

  活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

  (1)美美得95分,应记为多少

  (2)多多被记作一12分,他实际得分是多少

  课后反思

  1.1.2正数和负数

  教学目的:

  (一)知识点目标:

  1.了解正数和负数在实际生活中的应用。

  2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

  3.进一步理解0的特殊意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

  2.熟练地用正、负数表示具有相反意义的量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的热情。

  教学重点:能用正、负数表示具有相反意义的量。

  教学难点:进一步理解负数、数0表示的量的意义。

  教学方法:小组合作、师生互动。

  教学过程:

  创设问题情境,引入新课:分小组派代表,注意数学语言规范。

  1.认真想一想,你能用学过的知识解决下列问题吗

  某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径最大可以是 毫米,最小可以是 毫米。

  2.下列说法中正确的( )

  A、带有“一”的数是负数; B、0℃表示没有温度;

  C、0既可以看作是正数,也可以看作是负数。

  D、0既不是正数,也不是负数。

  [师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

  讲授新课:

  例1. 仔细找一找,找了具有相反意义的量:

  甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

  例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;

  (2)2001年下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,法国减少2.4%,

  英国减少3.5%,意大利增长0.2%,中国增长7.5%。

  写出这些国家2001年商品进出口总额的增长率。

  例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)

  例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米

  复习巩固:练习:课本P6 练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗

  课后作业:课本P7习题1.1 的第3、6、7、8题。

  活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示

初一上册的数学课件

  教学目标

  1、使学生了解正数与负数是从实际需要中产生的;

  2、使学生理解正数与负数的概念,并会判断一个数是正数还是负数;

  3、初步会用正负数表示具有相反意义的量;

  4、在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。

  教学重难点

  重点:正负数的概念

  难点:负数的概念及意义

  教学工具

  班班通多媒体

  教学过程

  一、从学生原有的认知结构提出问题

  大家知道,数学与数是分不开的,它是一门研究数的学问。现在我们一起来回忆一下,小学里已经学过哪些类型的数

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

  为了表示一个人、两只手、……,我们用到整数1,2,…。

  为了表示半小时、四元八角七分、……,我们需用到分数和小数4.87、…。

  为了表示“没有人”、“没有羊”、……,我们要用到0。

  但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。

  二、师生共同研究形成正负数概念

  某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

  现实生活中,像这样的相反意义的量还有很多。

  例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。

  又如,某仓库昨天运进货物2 吨,今天运出货物2吨,“运进”和“运出”,其意义是相反的。

  同学们能举例子吗

  学生回答后,教师提出:怎样区别相反意义的量才好呢

  待学生思考后,请学生回答、评议、补充。

  教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

  运进货物2吨,记作+2;运出货物2吨,记作-2。

  ……

  教师讲解:什么叫做正数?什么叫做负数?强调,0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数、负数的“+”、“-”号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

  三、运用举例变式练习

  例1、 所有的正数组成正数集合,所有的负数组成负数集合。把下列各数中的

  正数和负数分别填在表示正数集合和负数集合的圈里:

  此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用图表示集合,也可以用大括号表示集合。

  课后小结

  由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

  课后习题

  1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。

  2、在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖周中标着-392,这表明死海的湖面与海平面相比的高度是怎样的

  3、在下列各数中,哪些是正数?哪些是负数

  4、如果-50元表示支出50元,那么+200元表示什么

初一上册数学《有理数》课件

  教学目标:

  1、明白生活中存在着无数表示相反意义的量,能举例说明;

  2、能体会引进负数的必要性和意义,建立正数和负数的数感。

  重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

  难点:对负数的意义的理解。

  教学过程:

  一、知识导向:

  本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

  二、新课拆析:

  1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。

  如:0,1,2,3,…, ,

  2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

  如:汽车向东行驶 3千米和向西行驶2千米;

  温度是零上10°C和零下5°C;

  收入500元和支出237元;

  水位升高1.2米和下降0.7米;

  3、 上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

  一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

  如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C

  概括:我们把这一种新数,叫做负数, 如:-3,-45,…

  过去学过的那些数(零除外)叫做正数,如:1,2.2…

  零既不是正数,也不是负数

  例:下面各数中,哪些数是正数,哪些数是负数,

  1,2.3,-5.5,68,-,0,-11,+123,…

  三、阶梯训练:

  P18 练习:1,2,3,4。

  四、知识小结:

  从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

  五、作业巩固:

  1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;

  2、分别举出几个正数与负数(最少6个)。

  3、P20 习题2.1:1题。

人教版七年级上册角数学课件

  一、设计理念:

  在教学中,应注重使学生探索现实世界中有关图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单的图形,应注重通过观察物体、图案等活动,发展学生的空间观念。

  二、教材分析:

  本课是在以前学过的基础上进行新授的,并且本单元要学的图形都是在学生已经直观认识这些几何图形的基础上学习的,所以在教学时,应注重把握好旧知向新知的引渡,使学生能自然而然激发自己的学习兴趣。

  三、教学目标:

  1、使学生认识射线,知道直线、射线和线段之间的联系和区别。

  2、使学生认识角。

  四、教学流程:

  (一)、创设情境,激发兴趣。

  师:(出示动物百米赛跑图)你知道跑道是由什么图形组成的吗

  生:线段。

  师:你会画线段吗?(指名板演)用什么画的?为什么要用直尺画呀

  (此过程自然而然导入线段的特征,从而为后面要学的射线、直线作好准备)

  师:线段是直的,这是线段的什么呀?你还知道线段的哪些特征。

  生:有两个端点,无限长(可以量出长度)

  师:如果将线段的一端延长(或两端都延长)那会变成什么图形呢

  (二)、认识射线、直线。

  1、 自学课本第109页

  2、 比较线段、射线和直线,并从现实生活中举事例。

  师:它们各叫什么名字呀?它们又与线段有什么不同和相同的地方呢

  学生回答。

  师:你能应用这个知识解释生活中或自然界中的射线吗?看谁说的多。

  生:手电筒的光线。

  生:探照灯射出的线……

  五、教学结束:

  让学生能把现实生活中的东西和数学知识联系在一起,让学生能应用数学知识了解社会,并使学生知道数学来自社会,也能用于社会。

  教学反思:

  本节课是在学生认识角的基础上,进一步认识量角的单位和学习用量角器测量角的大小。其中读角的度数是一个难点,什么时候看内圈,什么时候看外圈是学生容易混淆的地方。教学中的数学概念多,如:中心点、零刻度线、内刻度线、外刻度线都是一些抽象的纯数学语言)知识盲点多,几乎没有旧知识作铺垫,操作程序复杂,尤其是对于动作不够协调的四年级学生来说,是一次关于手与脑的挑战。

  教学中,我为学生提供了动手、动脑、动口“做数学”的机会,从中培养学生的数学思维、自主学习的能力和问题意识。认识量角器这一环节,先让学生观察自己的量角器,在量角器上你发现了什么?新鲜的事物总是能吸引学生的注意,学生的观察是认真的,仔细的,汇报发现也很积极,我给予肯定和表扬,然后引导归纳小结。在这个环节中学生自主探究,从中体验了探索的乐趣。紧接着我提出问题:怎样用量角器去量一个角呢?激发学生往下学习的欲望。

  学生尝试量角,探求量角的方法。学生看到的只是一个静态的、完整的角,还没有认识到角是由一条射线绕端点旋转而成,量角时为什么量角器中间那个点对准角的顶点,零刻度线对准角的一边,另一边看刻度,对于角的旋转过程和方向没有建立表象加以认识,自然对读角的刻度时很茫然,弄不明白什么情况看外刻度线上的数或内刻度线上的数,尽管有的同学会量,也不知所措,说不出理由,因为学生的理解抽象思维远逊于对形象的记忆,教学中我注重引导学生去寻找量角的方法,中心对准角的顶点,就意味着量角器上有角的顶点,零线对准角的一条边,另一条边旋转到量角器的另一条刻度线上,说明你要量的角就是量角器上形成的这个角。教学时发现学生比较容易认错刻度,因为每条长刻度线上都有两个数,这是教学的一个难点。我组织学生小组讨论,有什么好方法来突破这个难点,之后请学生发言。有的说:“与量角器的零刻度线重合的这条边对着的 0 是在内圈的,另一条边就看内圈的数字,如果对着的 0 是在外圈的,另一条边就看外圈的数字。”还有的说:“我先判断画的角如果是锐角就认刻度线上的小数,如果是钝角就认刻度线上的大数。在这个时机引导总结出量角的方法:“中心对顶点,零线对一边,另一边认刻度,内外分清楚。”还真不能小看学生的力量,他们总结的方法很适合大家用。这样给学生留出思考和探究的时间和空间得出的结论,比教师一一讲授要好。

  此外,我的教学收获是:在上课时,我们会牵着学生的鼻子走,让学生朝自己设定的方向发展。但是通过观察我发现,其实学生有自己的思想,有自己的体验,在教学时要关注这些,选取合理的因素加以利用。给学生提供思考和解决问题的空间,调动学生的主动性和积极性,能培养学生的思维能力,让不同层次的学生取得不同的进步。

七年级上册数学有理数课件

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力。

  有理数减法法则。

  有理数的减法转化为加法时符号的改变。

  电脑、投影仪

  一、从学生原有认知结构提出问题

  1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

  2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

  3.填空:(1)____+6=20;      (2)20+____=17;(3)____+(-2)=-20;           (4)(-20)+___=-6.

  二、师生共同研究有理 数减法法则

  问题1  (1)4-(-3)=______ ;(2)4+(+3)=______.

  教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

  思考:减法可以转化成加法运算.但是,这是否具有一般性

  问题2  (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

  对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

  归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

  强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

  三、运用举例 变式练习

  例1  计算:(1)9 -(-5);  (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

  例2  世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米

  例3  P63例3

  例4  15℃比5℃高多少? 15℃比-5℃高多少

  练一练: P63. 1题  P64-65数学理解1、问题解决1、联系拓广1、2题.

  补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

  (5)0-6;  (6)6-0;    (7)0-(-6); (8)(-6)-0.

  2.计算:(1)16-47;    (2)28-(-74);   (3)(-37)-(-85);    (4)(-54)-14;

  (5)123-190;  (6)(-112)-98;  (7)(-131)-(-129);   (8)341-249.

  3.计算:(1)(3-10)-2;  (2)3-(10-2); (3)(2-7)-(3-9);

  4.当a=11,b=-5,c=-3时,求下列代数式的值:

  (1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

  四、反思小结

  1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。习题2.6知识技能1、3、4题。

  本节课内容较为简单,学生掌握良好,课上反应热烈。

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

初中英语语法知识点

初中学英语的方法及技巧