初一上学期数学
怎样学好初一数学
由于数学是“人们参加社会生活,从事生产劳动和学习、研究现代科学技术必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。”
因此对于我们每一个刚刚升入初中的同学来说,都希望自己能学好数学。如何顺利完成好小学到中学的过渡。学好初一代数,下面向大家提一些建议和希望。
一、要不断培养学习数学的兴趣和求知欲望
许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。
二、要养成认真读书,独立思考的好习惯
过去有些同学认为:学习数学主要是靠上课听老师讲明白,而把我们手中的数学课本仅仅当成做作业的“习题集”。这就有两个认识问题必须要解决。一是同学们要认识到,我们的教科书记载了由数学工作者整理的、大家必须掌握的基础知识,以及如何运用这些知识解决问题等。因此,要想真正获得知识,认真读书、培养自学能力是一条根本途径。我们希望同学们在中学老师的指导、帮助下,从过去不读书、不会读书转变为爱读书、学会读书,进而养成认真读书的好习惯;二是同学们还要认识到,许多数学问题不是单靠老师讲明白的,主要是靠同学们自己想明白的。孔子日:”学而不思则罔,思而不学则殆。”这句话极力精辟地阐述了学习和思考的辩证关系,即要学而恩、又要思而学。
大家学习数学的过程主要是自己不断深入思考的过程。我们希望大家今后在上数学课时。无论老师讲新课,还是复习、讲评作业练习,都要使自己的注意力高度集中,边听边积极思考问题,捕捉有用的信息,随时抓住萌发出的灵感。对于没弄明白的问题,一定要及时、主动去解决它,直到弄懂为止。
在学习第一章《代数初步知识》时,你是否能通过看书给自己提出如下的一些问题。想办法解决它。例如:为什么要用字母表示数?什么是代数式?列代数式的关键是什么?怎样用代数式表示某种规律?等等。
另外,在做练习时,如遇到把两数和与这两数差的积的平方列成代数式时,你是否搞清楚这其中有哪几个不同的数量?如何用字母表示它们,应该用哪些数学运算符号有序连接反映数量之间分层次的内在联系,从而使文学语言转化为代数式语言,即[(a+b) (a-b)]2。如果写成为(a+b)(a-b)2那就不是原来的意思了。
到了初一,与小学学数学的一个很大的不同是要学习许多数学概念,特别是学第二章有理数。由于数学概念是我们进行判断、推理的依据,是解题的基础,所以一定要准确地理解它们。虽然数学概念往往比较抽象,但它又是从实际生活中的具体事例概括提炼出来的,因此大家在学习数学概念(例如正数和负数、数轴、数的绝对值等)时,要注意与生活、生产实际相结合,会从具体的事例中归纳、慨括出该概念的本质,看书时要抓住概念定义中的关键词语,进行思考,理解它的内涵,这样就能把课本读“精”,“钻”进去,并在运用中逐步加深对数学概念的理解和掌握。
我们相信,会有一大批同学,通过培养认真读书的习惯,提高自学能力;通过培养独立思考的习惯,提高思维能力。
三、要始终抓住如何“从算术进展到代数”这个重要的基本课题
《初一代数》(上册)的数学内容从整体上看主要是解决从算术进展到代数这个重要的基本课题。我们认为主要体现在以下两个方面。一方面是“数集的扩充”,即引进负数,把原有的算术数集合扩充到有理数集合;另一方面是解代数方程的原理和方法,即从用字母表示数,到用“列方程”取代
数学上册期末试卷
1.惠民县2019年元旦这天的最高气温是2℃,最低气温是-8℃,则这天的最高气温比最低气温高
A.10℃B.-10℃C.6℃D.-6℃
2.石庙二中7(3)有一位善于动脑筋的宋震同学,在学完有效数字后,他测了一下自己的钢笔长为0.06250米,于是,问自己的同位梁辉强:“你能说出它的有效数字的个数以及精确到哪一位吗?”
A.有4个有效数字,精确到万分位
B.有3个有效数字,精确到十万分位
C.有4个有效数字,精确到十万分位
D.有3个有效数字,精确到万分位
3.学完乘方后,你知道下面哪一个运算结果相等
A.与B.与
C.与D.与
4.李双、李见是一对爱学习、进取心强的姐妹,学完第一章《有理数》后,李双对李见说:“a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,你说a-b+c-d等于多少?”李见脱口答出正确答案,聪明的你知道是哪个吗
A.1B.3C.1或3D.2或-1
5.今天数学课上,赵老师讲了多项式的加减,放学后,王鹏回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题+空格的地方被钢笔水弄污了,那么空格中的一项是
七年级数学
根据课程改革的要求,初中数学教学中通过课题学习,学生将经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的应用价值,发展自己数学思维能力,获得一些研究问题、解决问题的经验和方法,从而培养学生探究数学学习的兴趣,体验学习的成功。
在八年级的数学(上)中的《整式的乘除》中,我们遇到了《平方差与完全平方公式》的教学任务。根据过往学生的认识过程来看,学生的定向思维就认为(a+b)2=a2+b2,而且还是根深蒂固的,那么如何在教学中转变或是加深学生对此公式的正确认识呢?在课前,我想了很多方法,也参考一些兄弟学校的做法,我尝试用两种教学方法做个试验,看学生的接受情况如何。
方法一:数形结合——面积与代数恒等式的学习
从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的试验中发现、归纳公式。本课中,本想让学生课前先做好纸片,然后再堂上小组合作,探究公式。但是按学生的学习习惯来看,这课前的要求怕难落实,因而我改用了课件,用学生看屏幕观察和小组合作完成学卷的方式完成教学。
教学环节:(学生观察、小组合作归纳)问题1:首先请你仔细观察下图,你能用下面的图解释两数和乘以它们的差公式吗
问题2:请你组员一起合作,仿照问题1的方法,
表示(a+b)2与(a-b)2的几何图形。
就这两个问题,学生用了一节课完成。中间的学生活动,老师还是讲的比较多,因此答案也比较一律了,当然这与学生的学习能力有关。不过,学生总算明白两公式的几何意义了,这也算是本节课最大的收获了。但学生对公式的理解还是“半熟”。
方法二:数值验算——利用数值计算归纳公式
此方法可以说比较老套,但是对学生来说,可能容易接受。我的设计是这样的:
请把五组数的值分别输入下图的两个数值转换机,比较两个输出结果,你发现什么?这说明了什么
初一上册数学《有理数》课件
教学目标:
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
难点:对负数的意义的理解。
教学过程:
一、知识导向:
本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:
1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。
如:0,1,2,3,…, ,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶 3千米和向西行驶2千米;
温度是零上10°C和零下5°C;
收入500元和支出237元;
水位升高1.2米和下降0.7米;
3、 上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C
概括:我们把这一种新数,叫做负数, 如:-3,-45,…
过去学过的那些数(零除外)叫做正数,如:1,2.2…
零既不是正数,也不是负数
例:下面各数中,哪些数是正数,哪些数是负数,
1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练:
P18 练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;
2、分别举出几个正数与负数(最少6个)。
3、P20 习题2.1:1题。
初一上册的数学课件
教学目标
1、使学生了解正数与负数是从实际需要中产生的;
2、使学生理解正数与负数的概念,并会判断一个数是正数还是负数;
3、初步会用正负数表示具有相反意义的量;
4、在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。
教学重难点
重点:正负数的概念
难点:负数的概念及意义
教学工具
班班通多媒体
教学过程
一、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问。现在我们一起来回忆一下,小学里已经学过哪些类型的数
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、……,我们用到整数1,2,…。
为了表示半小时、四元八角七分、……,我们需用到分数和小数4.87、…。
为了表示“没有人”、“没有羊”、……,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
二、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。
又如,某仓库昨天运进货物2 吨,今天运出货物2吨,“运进”和“运出”,其意义是相反的。
同学们能举例子吗
学生回答后,教师提出:怎样区别相反意义的量才好呢
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进货物2吨,记作+2;运出货物2吨,记作-2。
……
教师讲解:什么叫做正数?什么叫做负数?强调,0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数、负数的“+”、“-”号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
三、运用举例变式练习
例1、 所有的正数组成正数集合,所有的负数组成负数集合。把下列各数中的
正数和负数分别填在表示正数集合和负数集合的圈里:
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用图表示集合,也可以用大括号表示集合。
课后小结
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
课后习题
1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。
2、在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖周中标着-392,这表明死海的湖面与海平面相比的高度是怎样的
3、在下列各数中,哪些是正数?哪些是负数
4、如果-50元表示支出50元,那么+200元表示什么
初一上册数学课件
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、 等是正数(也可加上“十”)
-3、-2、-0.5、- 等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少
(2)多多被记作一12分,他实际得分是多少
课后反思
1.1.2正数和负数
教学目的:
(一)知识点目标:
1.了解正数和负数在实际生活中的应用。
2.深刻理解正数和负数是反映客观世界中具有相反意义的理。
3.进一步理解0的特殊意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2.熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1.认真想一想,你能用学过的知识解决下列问题吗
某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径最大可以是 毫米,最小可以是 毫米。
2.下列说法中正确的( )
A、带有“一”的数是负数; B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1. 仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)
例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米
复习巩固:练习:课本P6 练习
课时小结:这节课我们学习了哪些知识?你能说一说吗
课后作业:课本P7习题1.1 的第3、6、7、8题。
活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示
北师版初一数学上册课件
第一课时
教学目标
1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处
2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。
3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
教学重点:
认识一些基本的几何体,并能描述这些几何体的特征
教学难点:
描述几何体的特征,对几何体进行分类。
教学过程:
一、设疑自探
1.创设情景,导入新课
在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体
2.学生设疑
让学生自己先思考再提问
3.教师整理并出示自探题目
①生活常见的几何体有那些
②这些几何体有什么特征
③圆柱体与棱柱体有什么的相同之处和不同之处
④圆柱体与圆锥体有什么的相同之处和不同之处
⑤棱柱的分类
⑥几何体的分类
4.学生自探(并有简明的自学方法指导)
举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体
说说它们的区别
二.解疑合探
1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探
2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类
2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展:
1.引导学生自编习题。
请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征
2.教师出示运用拓展题。
(要根据教材内容尽可能要试题类型全面且有代表性)
3.课堂小结
4.作业布置
五、教后反思
第二课时
教学目标
1、知识:认识点、线、面的运动后会产生什么的几何体
2、能力:通过点、线、面的运动的认识几何体的产生什么
3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
教学重点:
几何体是什么运动形成的
教学难点:
对“面动成体”的理解
教学过程:
一、设疑自探
1.创设情景,导入新课
我们上节课认识了生活中的基本几何体,它们是由什么形成的呢
2.学生设疑
点动会生成什么几何体
线动会生成什么几何体
面动会生成什么几何体
3.教师整理并出示自探题目
教师根据学生的?疑情况梳理、归纳、细化得出自探题目(自探要求)
4.学生自探(讨论)
二.解疑合探
举例分析那些几何体由什么运动形成的
那些图形运动可以形成什么几何体
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展:
1.引导学生自编习题。
2.教师出示运用拓展题。
(要根据教材内容尽可能要试题类型全面且有代表性)
3.课堂小结
4.作业布置
五、教后反思
上学期数学知识点归纳总结
30即不是正数也不是负数。
4正数大于0,负数小于0,正数大于负数。
二有理数
1.有理数由整数和分数组成的数。
包括正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如π
2.整数正整数、0、负整数,统称整数。
3.分数正分数、负分数。
三数轴
1.数轴用直线上的点表示数,这条直线叫做数轴。
画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
2.数轴的三要素原点、正方向、单位长度。
3.相反数只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
四有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律+=+两个数相加,交换加数的位置,和不变。
4.加法结合律++=++三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.?=+?减去一个数,等于加这个数的相反数。
五有理数乘法先定积的符号,再定积的大小
1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律=
4.乘法结合律=
5.乘法分配律+=+
六有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
七乘方1.求个相同因数的积的运算,叫做乘方。
写作。
乘方的结果叫幂,叫底数,叫指数2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
八有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
九科学记数法、近似数、有效数字。
第二章整式一整式
1.整式单项式和多项式的统称叫整式。
2.单项式数与字母的乘积组成的式子叫单项式。
单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4。
次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式几个单项式的和叫做多项式。
6.项组成多项式的每个单项式叫做多项式的项。
7.常数项不含字母的项叫做常数项。
8.多项式的次数多项式中,次数的项的次数叫做这个多项式的次数。
9.同类项多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
二整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变【初一上学期数学知识点归纳总结】
初一上册数学日记
今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起。我跑过去一年,原来是抓奖游戏。“哼,抓奖有什么好玩的。”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了。”我急切地问:“是什么呀!”“50元钱。”那人噔大眼睛说。一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试。”说完,我便问店主怎么抓法。店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖。”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主。
尽管,这可以抓10次,但那份大奖我还是没有拿到。
回到家之后,我想了想,感觉有点不对劲。我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱。但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱。
最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪了。
初一上册数学期末试卷
一 选择题(每小题3分,共12小题,共计36分)
1. 的绝对值的倒数是( )
A. B. C. - D.
2.在-(-5)、 、-22、(-1)5这四个数中,负数有( )
A.4个 B.3个 C.2个 D.1个
3.根据北京市统计局2015年3月发布的数据,2015年3月北京市工业销售产值累计4006.4亿元,将6006.4用科学记数法表示应为( )
A.0.40064×104 B.4.0064×103 C.4.0064×104 D.40.064×102
4.对于下列四个式子,0.1; ; ; .其中不是整式的有( )
A.1个 B.2个 C.3个 D.4个
5.若-2a与 是同类项,则的值为( )
A.9 B.-9 C.18 D.-18
6.下列方程是一元一次方程的是( )
A.y2+2y=y(y-2)-3 B. C. D.3x-8y=13
7.已知等式ax=ay,下列变形正确的是( )
A.x=y B.3-ax=3-ay C.ay=-ax D.ax+1=ay-1
8.将方程 变形正确的是( )
A. B.
C. D.
9.已知 ,且 ,若数轴上的四点M、N、P、Q中的一个能表示数a(如图),则这个点是( )
A.M B.N C.P D.Q
10.已知a>0,b<0, ,那么以下判断正确的是( )
A.1-b>-b>1+a>a B.1+a>a>1-b>-b C.1+a>1-b>a>-b D.1-b>1+a>-b>a
11.已知当x=1时,代数式2ax3+3bx+5=4,则当x=-1时,代数式4ax3+6bx-7的值是( )
A.-9 B.-7 C.-6 D.-5
12.已知示一个两位数,n表示一个三位数,把在n的左边组成一个五位数,那么这个五位数可以表示成( )
A. B.1000 C.100 D.100
二 填空题(每小题3分,共6小题,共计8分)
13.-32的相反数是 .
14.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有座位,则a、n和间的关系 .
15.某品牌商品,按标价八折出售,仍可获得10%的利润,若该商品标价275元,则商品的进价为 元.
16.有理数a、b、c的位置如图所示,化简式子: = .
17.对于有理数a、b,定义一种新运算“*”,即a*b=3a+2b,则式子[(x+y)*(x-y)]*3x化简后得到
18.在下表从左到右的每个小格子中填入一个有理数,使得其中任意四个相邻格子中所填的有理数之和都为-5,则第2016个格子中应填入的有理数是 .
a -7 b -4 c d e f 2 ...
三 解答题:共6小题,共46分。
19.计算:(每小题4分,共16分)
(1) (2)
20.解方程:每小题4分,共8分。
(1) (2)
21.化简求值(5分)已知,-1.求 的值.
22.(本小题5分)已知多项式 .
(1)若多项式的值与字母x的取值无关,求a、b的值;
(2)在(1)的条件下,先化简多项式 ,再求它的值.
23.(本小题6分)观察下列算式,寻找规律,理由规律解答后面的问题:
,....,
①请按上述规律填写: × +1= =82;
可知:若n为正整数,则n× +1=(n+1)2.
②请你用找到的规律计算: .
24.(本小题6分)数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为 .根据以上知识解题:
(1)若数轴上两点A、B表示的数为x,-1.
①A、B之间的距离可用含x的式子表示为 ;
②若该两点之间的距离为2,那么x的值为 .
(2) 的最小值为 ,此时x的取值范围是 .
(3)已知 ,求x-2y的最大值是 和最小值是 .