初二上学期数学知识点
七年级数学上册知识点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab0或;
ab0或;ab=0a=0或b=0;a=
7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.
8.一元一次不等式组的解集的四种类型:设ab
9.几个重要的判断:,,
整式的乘除
1.同底数幂的乘法:a+n,底数不变,指数相加.
2.幂的乘方与积的乘方:(a,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.
3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.
4.单项式与多项式的乘法:+b+c)=++,用单项式去乘多项式的每一项,再把所得的积相加.
5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.
6.乘法公式:
(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
①(a+b)2=a2+2ab+b2,两个数和的平方,等于它们的平方和,加上它们的积的2倍;
②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.
7.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式:;
※(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k
①可以判断ax2+bx+c值的符号;②当x=h时,可求出ax2+bx+c的最大(或最小)值k.
※(3)注意:.
8.同底数幂的除法:a-n,底数不变,指数相减.
9.零指数与负指数公式:
(1)a0=1(aa-n=,(a0).注意:00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.0110-5.
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.
11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.
13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.
线段、角、相交线与平行线
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。编辑以备借鉴。
数学知识点总结
第一章勾股定理
定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。定义:满足a+b=c的三个正整数,称为勾股数。
第二章实数
定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)
一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。正数的立方根是正数;0的立方根是0;负数的立方根是负数。求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
七年级上册数学知识点总结
第一章 有理数
1.1正数和负数
①把0以外的数分为正数和负数。0是正数与负数的分界。
②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
1.2有理数
1.2.1有理数
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
1.2.2数轴
①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数
①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数 负数的相反数是正数
1.2.4绝对值
①绝对值 |a|
②性质:正数的绝对值是它的本身
负数的绝对值的它的相反数
0的绝对值的0
1.2.5数的大小比较
①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
1.3.2有理数的减法
①减去一个数,等于加这个数的相反数。a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba
⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
1.4.2有理数的除法
①除以一个不等0的数,等于乘以这个数的倒数。
②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
1.5有理数的乘方
1.5.1乘方
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
②负数的奇次幂是负数,负数的偶次幂的正数。
③正数的任何次幂都是正数,0的任何正整数次幂都是0。
④做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
1.5.2科学记数法。
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
1.5.3近似数
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
②近似数与准确数的接近程度,可以用精确度表示。
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章 整式的加减
2.1整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
2.2 整式的加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章 一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式
②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二) 去括号与去分母
①一般步骤:1.去分母
2.去括号
3.移项
4.合并同类项
5.系数化为一
3.4实际问题与一元一次方程
利用方程不仅能求具体数值,而且可以进行推理判断。
第四章 图形认识初步
4.1多姿多彩的图形
4.1.1几何图形
①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
4.1.2点,线,面,体
①几何体也简称体。
②包围着体的是面。面有平的面和曲的面两种。
③面和面相交的地方形成线。(线有直线和曲线)
④线和线相交的地方是点。(点无大小之分)
⑤点动成线 ,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
⑧线段的比较:1.目测法 2.叠合法 3.度量法
4.2 直线,射线,线
①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。(两点之间,线段最短)
⑦连接两点间的线段的长度,叫做这两点的距离。
4.3 角
4.3.1角
①角也是一种基本的几何图形。
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。
③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
⑤以度,分,秒为单位的角的度量制,叫做角度制。
4.3.2角的比较与运算
①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
4.3.3余角和补角
①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。
②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
③等角的补角相等。
④等角的余角相等。
上册数学知识点归纳总结
1全等三角形的对应边、对应角相等
2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5边边边公理(SSS)有三边对应相等的两个三角形全等
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的平分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的平分线上
9角的平分线是到角的两边距离相等的所有点的集合
10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21推论1等腰三角形顶角的平分线平分底边并且垂直于底边
22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23推论3等边三角形的各角都相等,并且每一个角都等于60°
24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25推论1三个角都相等的三角形是等边三角形
26推论2有一个角等于60°的等腰三角形是等边三角形
27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28直角三角形斜边上的中线等于斜边上的一半
29定理线段垂直平分线上的点和这条线段两个端点的距离相等
30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32定理1关于某条直线对称的两个图形是全等形
33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37勾股定理的逆定理如果三角形的三边长a、b、c相关系a^2+b^2=c^2,那么这个三角形是直角三角形
38定理四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理n边形的内角的和等于(n-2)×180°
41推论任意多边的外角和等于360°
42平行四边形性质定理1平行四边形的对角相等
43平行四边形性质定理2平行四边形的对边相等
44推论夹在两条平行线间的平行线段相等
45平行四边形性质定理3平行四边形的对角线互相平分
46平行四边形判定定理1两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3对角线互相平分的四边形是平行四边形
49平行四边形判定定理4一组对边平行相等的四边形是平行四边形
50矩形性质定理1矩形的四个角都是直角
51矩形性质定理2矩形的对角线相等
52矩形判定定理1有三个角是直角的四边形是矩形
53矩形判定定理2对角线相等的平行四边形是矩形
54菱形性质定理1菱形的四条边都相等
55菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1四边都相等的四边形是菱形
58菱形判定定理2对角线互相垂直的平行四边形是菱形
59正方形性质定理1正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1关于中心对称的两个图形是全等的
62定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理如果两个图形的对应点连线都经过某一点,并且被这个点平分,那么这两个图形关于这个点对称
64等腰梯形性质定理等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
69推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
70推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
71三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
72梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
73(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d
74(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
75(3)等比性质如果a/b=c/d=…=(b+d+…+n≠0),那么(a+c+…+(b+d+…+n)=a/b
76平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
77推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
78定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
79平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
80定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
81相似三角形判定定理1两角对应相等,两三角形相似(ASA)
82直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
83判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
84判定定理3三边对应成比例,两三角形相似(SSS)
85定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
86性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
87性质定理2相似三角形周长的比等于相似比
88性质定理3相似三角形面积的比等于相似比的平方
89任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值