孩子思维训练三种方法
奥数学习有利于训练孩子的思维能力
数字迷
一讲我们主要研究加、减法的数字迷。
1.一根木料截成3段要6分钟,如果每截一次的时间相等,那么截7段要几分钟
2.有一幢楼房高17层,相邻两层之间都有17级台阶,某人从1层走到11层,一共要登多少级台阶
3.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶
4.一座楼房每上1层要走16级台阶,到小英家要走64级台阶,小英家住在几楼
5.一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟
6.时钟3点钟敲3下,6秒钟敲完,12点钟敲12下,几秒钟敲完
7.某人到高层建筑的10层去,他从1层走到5层用了100秒,如果用同样的速度走到10层,还需要多少秒
8.A、B二人比赛爬楼梯,A跑到4层楼时,B恰好跑到3层楼,照这样计算,A跑到16层楼时,B跑到几层楼
9.铁路旁每隔50米有一根电线杆,某旅客为了计算火车的速度,测量出从第一根电线杆起到经过第37根电线杆共用了2分钟,火车的速度是每秒多少米
1.解:每截一次需要:6÷(3-1)=3(分钟),截成7段要3×(7-1)=18(分钟)
答:截成7段要18分钟。
2.解:从1层走到11层共走:11-1=10(个)楼梯,从1层走到11层一共要走:17×10=170(级)台阶。
答:从1层走到11层,一共要登170级台阶。
3.解:每一层楼梯的台阶数为:48÷(4-1)=16(级),从1楼到6楼共走:6-1=5(个)楼梯,从1楼到6楼共走:16×5=80(级)台阶。
答:从1楼到6楼共走80级台阶。
4.解:到小英家共经过的楼梯层数为:64÷16=4(层),小英家住在:4+1=5(楼)
答:小英家住在楼的第5层。
5.解:火车的总长度为:5×20+1×(20-1)=119(米),火车所行的总路程:119+81=200(米),所需要的时间:200÷20=10(分钟)
答:需要10分钟。
6.解:每个间隔需要:6÷(3-1)=3(秒),12点钟敲12下,需要3×(12-1)=33(秒)
答:33秒钟敲完。
7.解:每上一层楼梯需要:100÷(5-1)=25(秒),还需要的时间:25×(10-5)=125(秒)
答:从5楼再走到10楼还需要125秒。
8.由A上到4层楼时,B上到3层楼知,A上3层楼梯,B上2层楼梯。那么,A上到16层时共上了15层楼梯,因此B上2×5=10个楼梯,所以B上到10+1=11(层)。
答:A上到第16层时,B上到第11层楼。
9.解:火车2分钟共行:50×(37-1)=1800(米)
2分钟=120秒
火车的速度:1800÷120=15(米/秒)
答:火车每秒行15米。
1.鸡兔同笼
鸡兔同笼,头共46,足共128,鸡兔各几只
【分析】假设只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18(只).当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!
2.鸡兔同笼
鸡和兔共有100只脚,若将鸡换成兔,将兔换成鸡,则共有86只脚,则鸡有多少只?兔有多少只
【分析】【解法一】:鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让鸡只数和兔只数相等后的脚数:100+7×2=114(条);
鸡的脚数:114÷(2+1)=38(条);
鸡的只数:38÷2=19(只);兔的只数:19-7=12(只);
【解法二】鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让兔只数和鸡只数相等后的脚数:100-7×4=72(条);
鸡的脚数:72÷(2+1)=24(条);
兔(鸡)的只数:24÷2=12(只);鸡的只数:12+7=19(只);
【解法三】:方程法设鸡有x只,兔有y只;
解方程得:x=12;y=19;
1.找规律答案:
(1)在这数列中,后一个比前一个数多2,根据这个规律,括号里里应该填10、12;
(2)在这个数列里,后一个比前一个数多3,根据这个规律,括号里里应该填10、13;
(3)在这个数列里,前一个数比后一个数多5,根据这个规律,括号里应填15、10。
2.找规律答案:
(1)在这数列中,前一个比后一个数多2,根据这个规律,括号里里应该填24、22、20;
(2)在这个数列里,第一个数加2是第二个数,第三个数加3是第三个数,依次规律,括号里应填10和15
(3)在这个数列里,前一个数比后一个数少5,根据这个规律,括号里应填30、35。
3.找规律答案:
为了寻找规律,再多写出几项出来:
12345,23451,34512,45123,51234,12345,23451,34512,45123,51234,12345,23451……
仔细观察,可发现该数列的第6项同第1项,第7项同第2项,第8项同第3项……也就是说该数列各项的出现具有周期性,他们是循环出现的,一个循环节包含5项。100÷5=20
可见第100项与第5项、第10项一样(项数都能被5整除),即第100项是51234。
考点:加减法中的巧算..
分析:共9项,公差为100,找到中间一项,乘以9即可求解.
解答:解:197+297+397+…+997,
=597×9,
=(600-3)×9,
=600×9-3×9,
=5400-27,
=5373.
故答案为:5373.
如何培养孩子逻辑思维能力
儿童心理学家及儿童教育学家根据儿童生长发育的特点,提出应从以下几方面进行培养。
培养孩子的逻辑思维能力很重要,那么从何入手呢
儿童心理学家及儿童教育学家根据儿童生长发育的特点,提出应从以下几方面进行培养。
1、学习分类法即把日常生活中的一些东西根据某些相同点将其归为一类,如根据颜色、形状、用途等。父母应注意引导孩子寻找归类的根据,即事物的相同点。从而使孩子注意事物的细节,增强其观察能力。
2、认识大群体与小群体首先,应教给孩子一些有关群体的名称,如家具、动物食品等。使孩子明白,每一个群体都有一定的组成部分。
同时,还应让孩子了解,大群体包含许多小群体,小群体组合成了大群体。如动物——鸟——麻雀。
3、了解顺序的概念这种学习有助于孩子今后的阅读,这是训练孩子逻辑思维的重要途径。这些顺序可以是从最大到最小、从最硬到最软、从甜到淡等,也可以反过来排列。
4、建立时间概念幼儿的时间观念很模糊,掌握一些表示时间的词语,理解其含义,对孩子来说,无疑是必要的。当孩子真正清楚了“在……之前”、“立即”或“马上”等词语的含义后,孩子也许会更规矩些。
5、理解基本的数字概念不少学龄前儿童,有的甚至在两三岁时,就能从1“数”到10,甚至更多。与其说是在“数数”,不如说是在“背数”。父母在孩子数数时,不能操之过急,应多点耐心。让孩子从一边口里有声,一边用手摸摸物品,逐渐过渡到用眼睛“默数”。日常生活中,能够用数字准确表达的概念,父母们应尽量讲得准确。同时,还应注意使用“首先”、“其次”、“第三”等序数词。也可用日常生活中的数字关系,帮助孩子掌握一些增加减少的概念。
6、掌握一些空间概念成人们往往以为孩子天生就知道“上下左右,里外前后”等空间概念,实际并非如此。父母可利用日常生活中的各种机会引导孩子,比如:“请把勺子放在碗里”。对于孩子来说,掌握“左右”概念要难些.