初一上学期数学课程

互联网 2024-04-01 阅读

上学期数学知识点归纳总结

  30即不是正数也不是负数。

  4正数大于0,负数小于0,正数大于负数。

  二有理数

  1.有理数由整数和分数组成的数。

  包括正整数、0、负整数,正分数、负分数。

  可以写成两个整之比的形式。

  无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

  如π

  2.整数正整数、0、负整数,统称整数。

  3.分数正分数、负分数。

  三数轴

  1.数轴用直线上的点表示数,这条直线叫做数轴。

  画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

  2.数轴的三要素原点、正方向、单位长度。

  3.相反数只有符号不同的两个数叫做互为相反数。

  0的相反数还是0。

  4.绝对值正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  四有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则同号相加,到相同符号,并把绝对值相加。

  异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

  互为相反数的两个数相加得0。

  一个数同0相加减,仍得这个数。

  3.加法交换律+=+两个数相加,交换加数的位置,和不变。

  4.加法结合律++=++三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5.?=+?减去一个数,等于加这个数的相反数。

  五有理数乘法先定积的符号,再定积的大小

  1.同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律=

  4.乘法结合律=

  5.乘法分配律+=+

  六有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  七乘方1.求个相同因数的积的运算,叫做乘方。

  写作。

  乘方的结果叫幂,叫底数,叫指数2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

  3.同底数幂相乘,底不变,指数相加。

  4.同底数幂相除,底不变,指数相减。

  八有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  九科学记数法、近似数、有效数字。

  第二章整式一整式

  1.整式单项式和多项式的统称叫整式。

  2.单项式数与字母的乘积组成的式子叫单项式。

  单独的一个数或一个字母也是单项式。

  3.系数;一个单项式中,数字因数叫做这个单项式的系数。

  4。

  次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式几个单项式的和叫做多项式。

  6.项组成多项式的每个单项式叫做多项式的项。

  7.常数项不含字母的项叫做常数项。

  8.多项式的次数多项式中,次数的项的次数叫做这个多项式的次数。

  9.同类项多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10.合并同类项把多项式中的同类项合并成一项,叫做合并同类项。

  二整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1.去括号一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变【初一上学期数学知识点归纳总结】

初一上学期数学课程

怎样学好初一数学

  由于数学是“人们参加社会生活,从事生产劳动和学习、研究现代科学技术必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。”

  因此对于我们每一个刚刚升入初中的同学来说,都希望自己能学好数学。如何顺利完成好小学到中学的过渡。学好初一代数,下面向大家提一些建议和希望。

  一、要不断培养学习数学的兴趣和求知欲望

  许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。

  二、要养成认真读书,独立思考的好习惯

  过去有些同学认为:学习数学主要是靠上课听老师讲明白,而把我们手中的数学课本仅仅当成做作业的“习题集”。这就有两个认识问题必须要解决。一是同学们要认识到,我们的教科书记载了由数学工作者整理的、大家必须掌握的基础知识,以及如何运用这些知识解决问题等。因此,要想真正获得知识,认真读书、培养自学能力是一条根本途径。我们希望同学们在中学老师的指导、帮助下,从过去不读书、不会读书转变为爱读书、学会读书,进而养成认真读书的好习惯;二是同学们还要认识到,许多数学问题不是单靠老师讲明白的,主要是靠同学们自己想明白的。孔子日:”学而不思则罔,思而不学则殆。”这句话极力精辟地阐述了学习和思考的辩证关系,即要学而恩、又要思而学。

  大家学习数学的过程主要是自己不断深入思考的过程。我们希望大家今后在上数学课时。无论老师讲新课,还是复习、讲评作业练习,都要使自己的注意力高度集中,边听边积极思考问题,捕捉有用的信息,随时抓住萌发出的灵感。对于没弄明白的问题,一定要及时、主动去解决它,直到弄懂为止。

  在学习第一章《代数初步知识》时,你是否能通过看书给自己提出如下的一些问题。想办法解决它。例如:为什么要用字母表示数?什么是代数式?列代数式的关键是什么?怎样用代数式表示某种规律?等等。

  另外,在做练习时,如遇到把两数和与这两数差的积的平方列成代数式时,你是否搞清楚这其中有哪几个不同的数量?如何用字母表示它们,应该用哪些数学运算符号有序连接反映数量之间分层次的内在联系,从而使文学语言转化为代数式语言,即[(a+b) (a-b)]2。如果写成为(a+b)(a-b)2那就不是原来的意思了。

  到了初一,与小学学数学的一个很大的不同是要学习许多数学概念,特别是学第二章有理数。由于数学概念是我们进行判断、推理的依据,是解题的基础,所以一定要准确地理解它们。虽然数学概念往往比较抽象,但它又是从实际生活中的具体事例概括提炼出来的,因此大家在学习数学概念(例如正数和负数、数轴、数的绝对值等)时,要注意与生活、生产实际相结合,会从具体的事例中归纳、慨括出该概念的本质,看书时要抓住概念定义中的关键词语,进行思考,理解它的内涵,这样就能把课本读“精”,“钻”进去,并在运用中逐步加深对数学概念的理解和掌握。

  我们相信,会有一大批同学,通过培养认真读书的习惯,提高自学能力;通过培养独立思考的习惯,提高思维能力。

  三、要始终抓住如何“从算术进展到代数”这个重要的基本课题

  《初一代数》(上册)的数学内容从整体上看主要是解决从算术进展到代数这个重要的基本课题。我们认为主要体现在以下两个方面。一方面是“数集的扩充”,即引进负数,把原有的算术数集合扩充到有理数集合;另一方面是解代数方程的原理和方法,即从用字母表示数,到用“列方程”取代

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

供应商廉洁承诺书

朝花夕拾后记主要内容概括50字