数学三角函数知识点整理

互联网 2024-04-01 阅读

三角函数题型分类总结

  同学们进入高二要求背诵的公式也逐渐增多,为此数学网整理了高二数学三角函数公式,请参考。

  1.万能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  2.辅助角公式

  asint+bcost=(a^2+b^2)^(1/2)sin(t+r)

  cosr=a/[(a^2+b^2)^(1/2)]

  sinr=b/[(a^2+b^2)^(1/2)]

  tanr=b/a

  3.三倍角公式

  sin(3a)=3sina-4(sina)^3

  cos(3a)=4(cosa)^3-3cosa

  tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]

  4.积化和差

  sina*cosb=[sin(a+b)+sin(a-b)]/2

  cosa*sinb=[sin(a+b)-sin(a-b)]/2

  cosa*cosb=[cos(a+b)+cos(a-b)]/2

  sina*sinb=-[cos(a+b)-cos(a-b)]/2

  5.积化和差

  sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

  sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

  cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

  cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

数学三角函数知识点整理

数学知识点归纳总结

  第一章证明(二)

  ※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。

  ※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的

  直角三角形,其中一个锐角等于30o,这它所对的直角边必然等于斜边的一半。

  ※有一个角等于60o的等腰三角形是等边三角形。

  ※如果知道一个三角形为直角三角形首先要想的定理有:

  ①勾股定理:(注意区分斜边与直角边)

  ②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半

  ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)

  ※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义)

  直线与射线有垂线,但无垂直平分线

  ※线段垂直平分线上的点到这一条线段两个端点距离相等。

  ※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

  ※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如图1所示,AO=BO=CO)

  ※角平分线上的点到角两边的距离相等。

  ※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

  角平分线是到角的两边距离相等的所有点的集合。

  ※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

  (如图2所示,OD=OE=OF)

  第二章一元二次方程

  ※只含有一个未知数的整式方程,且都可以化为(a、b、c为

  常数,a≠0)的形式,这样的方程叫一元二次方程。

  ※把(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

  ※解一元二次方程的方法:①配方法即将其变为的形式

  ②公式法(注意在找abc时须先把方程化为一般形式)

  ③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

  ※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;

  ②将二次项系数化成1;

  ③把常数项移到方程的右边;

  ④两边加上一次项系数的一半的平方;

  ⑤把方程转化成的形式;

  ⑥两边开方求其根。

  ※根与系数的关系:当b2-4ac0时,方程有两个不等的实数根;

  当b2-4ac=0时,方程有两个相等的实数根;

  当b2-4ac0时,方程无实数根。

  ※如果一元二次方程的两根分别为x1、x2,则有:。

  ※一元二次方程的根与系数的关系的作用:

  (1)已知方程的一根,求另一根;

  (2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

  ①②③

  ④⑤

  ⑥⑦其他能用或表达的代数式。

  (3)已知方程的两根x1、x2,可以构造一元二次方程:

  (4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程的根

  ※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

  ※处理问题的过程可以进一步概括为:

  第三章证明(三)

  ※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。

  ※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

  ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

  两组对边分别相等的四边形是平行四边形。

  一组对边平行且相等的四边形是平行四边形。

  两条对角线互相平分的四边形是平行四边形。

  ※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。

  菱形的定义:一组邻边相等的平行四边形叫做菱形。

  ※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

  菱形是轴对称图形,每条对角线所在的直线都是对称轴。

  ※菱形的判别方法:一组邻边相等的平行四边形是菱形。

  对角线互相垂直的平行四边形是菱形。

  四条边都相等的四边形是菱形。

  ※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

  ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

  ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

  对角线相等的平行四边形是矩形。

  四个角都相等的四边形是矩形。

  ※推论:直角三角形斜边上的中线等于斜边的一半。

  正方形的定义:一组邻边相等的矩形叫做正方形。

  ※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

  ※正方形常用的判定:有一个内角是直角的菱形是正方形;

  邻边相等的矩形是正方形;

  对角线相等的菱形是正方形;

  对角线互相垂直的矩形是正方形。

  正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):

  ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

  平行四边形

  菱形

  矩形

  正方形

  一组邻边相等

  一组邻边相等且一个内角为直角

  (或对角线互相垂直平分)

  一内角为直角

  一邻边相等

  或对角线垂直

  一个内角为直角

  (或对角线相等)

  鹏翔教图3

  ※两条腰相等的梯形叫做等腰梯形。

  ※一条腰和底垂直的梯形叫做直角梯形。

  ※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

  同一底上的两个内角相等的梯形是等腰梯形。

  ※三角形的中位线平行于第三边,并且等于第三边的一半。

  ※夹在两条平行线间的平行线段相等。

  ※在直角三角形中,斜边上的中线等于斜边的一半

  第四章视图与投影

  ※三视图包括:主视图、俯视图和左视图。

  三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。

  主视图:基本可认为从物体正面视得的图象

  俯视图:基本可认为从物体上面视得的图象

  左视图:基本可认为从物体左面视得的图象

  ※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。

  ※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。

  ※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。

  物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。

  太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。

  探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。

  ※区分平行投影和中心投影:①观察光源;②观察影子。

  眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。

  ※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。

  ①点在一个平面上的投影仍是一个点;

  ②线段在一个面上的投影可分为三种情况:

  线段垂直于投影面时,投影为一点;

  线段平行于投影面时,投影长度等于线段的实际长度;

  线段倾斜于投影面时,投影长度小于线段的实际长度。

  ③平面图形在某一平面上的投影可分为三种情况:

  平面图形和投影面平行的情况下,其投影为实际形状;

  平面图形和投影面垂直的情况下,其投影为一线段;

  平面图形和投影面倾斜的情况下,其投影小于实际的形状。

  第五章反比例函数

  ※反比例函数的概念:一般地,(k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。

  (x为自变量,y为因变量,其中x不能为零)

  ※反比例函数的等价形式:y是x的反比例函数←→←→←→←→变量y与x成反比例,比例系数为k.

  ※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值即。(通常第二种方法更适用)

  ※反比例函数的图象由两条曲线组成,叫做双曲线

  ※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;

  ②选取的点越多画的图越准确;

  ③画图注意其美观性(对称性、延伸特征)。

  ※反比例函数性质:

  ①当k0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;

  ②当k0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;

  ③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。

  ※反比例函数图象的几何特征:(如图4所示)

  P

  B

  A

  O

  P

  B

  A

  O

  图4

  点P(x,y)在双曲线上都有

  第六章频率与概率

  ※在频率分布表里,落在各小组内的数据的个数叫做频数;

  每一小组的频数与数据总数的比值叫做这一小组的频率;即:

  在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。因此,各个小长方形的面积的和等于1。

  ※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。

  用一件事件发生的频率来估计这一件事件发生的概率。

  可用列表的方法求出概率,但此方法不太适用较复杂情况。

  ※假设布袋内有黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;

  ※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x条鱼,则可依照估算出鱼的条数。(注意估算出来的数据不是确切的,所以应谓之“约是XX”)

  ※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。

  北师大版初三下册数学知识点总结

  第七章直角三角形边的关系

  ※一.正切:

  定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即;

  ①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;

  ②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;

  ③tanA不表示“tan”乘以“A”;

  ④初中阶段,我们只学习直角三角形中,∠A是锐角的正切;

  ⑤tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。

  ※二.正弦:

  定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即;

  ※三.余弦:

  定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;

  ※余切:

  定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即;

  ※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

  0o30o45o60o90osinα01cosα10tanα01—cotα—10

  (通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则

  ①;

  ②;

  ※当从低处观测高处的目标时,视线与水平线

  所成的锐角称为仰角

  ※当从高处观测低处的目标时,视线与水平线所成

  的锐角称为俯角

  ※利用特殊角的三角函数值表,可以看出,(1)当

  角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。(2)0≤sinα≤1,0≤cosα≤1。

  ※同角的三角函数间的关系:

  倒数关系:tgα·ctgα=1。

  ※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

  ◎在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有

  (1)三边之间的关系:a2+b2=c2;

  (2)两锐角的关系:∠A+∠B=90°;

  (3)边与角之间的关系:

  (4)面积公式:(hc为C边上的高);

  (5)直角三角形的内切圆半径

  (6)直角三角形的外接圆半径

  ◎解直角三角形的几种基本类型列表如下:

  图2

  h

  i=h:l

  l

  A

  B

  C

  ◎解直角三角形的几种基本类型列表如下:

  ※如图2,坡面与水平面的夹角叫做坡角(或叫做坡比)。用字母i表示,即

  ◎从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC的方位角分别为45°、135°、225°。

  ◎指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

  第二章二次函数

  ※二次函数的概念:形如的函数,叫做x的二次函数。自变量的取值范围是全体实数。是二次函数的特例,此时常数b=c=0.

  ※在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围。

  ※二次函数y=ax2的图象是一条顶点在原点关于y轴对称的曲线,这条曲线叫做抛物线。

  描述抛物线常从开口方向、对称性、y随x的变化情况、抛物线的最高(或最低)点、抛物线与x轴的交点等方面来描述。

  ①函数的定义域是全体实数;

  ②抛物线的顶点在(0,0),对称轴是y轴(或称直线x=0)。

  ③当a>0时,抛物线开口向上,并且向上方无限伸展。当a<0时,抛物线开口向下,并且向下方无限伸展。

  ④函数的增减性:

  A、当a>0时B、当a<0时

  ⑤当|a|越大,抛物线开口越小;当|a|越小,抛物线的开口越大。

  ⑥最大值或最小值:当a>0,且x=0时函数有最小值,最小值是0;当a<0,且x=0时函数有最大值,最大值是0.

  ※二次函数的图象是一条顶点在y轴上且与y轴对称的抛物线

  ※二次函数的图象是以为对称轴,顶点在(,)的抛物线。(开口方向和大小由a来决定)

  ※a的越大,抛物线的开口程度越小,越靠近对称轴y轴,y随x增长(或下降)速度越快;a的越小,抛物线的开口程度越大,越远离对称轴y轴,y随x增长(或下降)速度越慢。

  ※二次函数的图象中,a的符号决定抛物线的开口方向,a决定抛物线的开口程度大小,c决定抛物线的顶点位置,即抛物线位置的高低。

  ※二次函数的图象与y=ax2的图象的关系:

  的图象可以由y=ax2的图象平移得到,其步骤如下:

  ①将配方成的形式;(其中h=,k=);

  ②把抛物线向右(h0)或向左(h0)平移h个单位,得到y=a(x-h)2的图象;

  ③再把抛物线向上(k0)或向下(k0)平移k个单位,便得到的图象。

  ※二次函数的性质:

  二次函数配方成则抛物线的

  ①对称轴:x=②顶点坐标:(,)

  ③增减性:若a0,则当x时,y随x的增大而减小;当x时,y随x的增大而增大。

  若a0,则当x时,y随x的增大而增大;当x时,y随x的增大而减小。

  ④最值:若a0,则当x=时,;若a0,则当x=时,

  ※画二次函数的图象:

  我们可以利用它与函数的关系,平移抛物线而得到,但往往我们采用简化了的描点法----五点法来画二次函数来画二次函数的图象,其步骤如下:

  ①先找出顶点(,),画出对称轴x=;

  ②找出图象上关于直线x=对称的四个点(如与坐标的交点等);

  ③把上述五点连成光滑的曲线。

  ¤二次函数的最大值或最小值可以通过将解析式配成y=a(x-h)2+k的形式求得,也可以借助图象观察。

  ¤解决最大(小)值问题的基本思路是:

  ①理解问题;

  ②分析问题中的变量和常量,以及它们之间的关系;

  ③用数学的方式表示它们之间的关系;

  ④做数学求解;

  ⑤检验结果的合理性、拓展性等。

  ※二次函数的图象(抛物线)与x轴的两个交点的横坐标x1,x2是对应一元二次方程的两个实数根

  ※抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:

  0===抛物线与x轴有2个交点;

  =0===抛物线与x轴有1个交点;

  0===抛物线与x轴有0个交点(无交点);

  ※当0时,设抛物线与x轴的两个交点为A、B,则这两个点之间的距离:

  化简后即为:------这就是抛物线与x轴的两交点之间的距离公式。

  第三章圆

  一.车轮为什么做成圆形

  ※1.圆的定义:

  描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的圆形叫做圆;固定的端点O叫做圆心;线段OA叫做半径;以点O为圆心的圆,记作⊙O,读作“圆O”

  集合性定义:圆是平面内到定点距离等于定长的点的集合。其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。

  对圆的定义的理解:①圆是一条封闭曲线,不是圆面;

  ②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。

  ※2.点与圆的位置关系及其数量特征:

  如果圆的半径为r,点到圆心的距离为d,则

  ①点在圆上===d=r;

  ②点在圆内===dr;

  ③点在圆外===dr.

  其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。

  二.圆的对称性:

  ※1.与圆相关的概念:

  ①弦和直径:

  弦:连接圆上任意两点的线段叫做弦。

  直径:经过圆心的弦叫做直径。

  ②弧、半圆、优弧、劣弧:

  弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。

  半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。

  优弧:大于半圆的弧叫做优弧。

  劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字母表示。)

  ③弓形:弦及所对的弧组成的图形叫做弓形。

  ④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

  ⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

  ⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

  ⑦圆心角:顶点在圆心的角叫做圆心角.

  ⑧弦心距:从圆心到弦的距离叫做弦心距.

  ※2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

  ※3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

  说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:

  ①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

  上述五个条件中的任何两个条件都可推出其他三个结论。

  ※4.定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

  三.圆周角和圆心角的关系:

  ※1.1°的弧的概念:把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧.

  ※2.圆心角的度数和它所对的弧的度数相等.

  这里指的是角度数与弧的度数相等,而不是角与弧相等.即不能写成∠AOB=,这是错误的

  ※3.圆周角的定义:

  顶点在圆上,并且两边都与圆相交的角,叫做圆周角.

  ※4.圆周角定理:

  一条弧所对的圆周角等于它所对的圆心角的一半.

  ※推论1:同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等;

  ※推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;

  ※四.确定圆的条件:

  ※1.理解确定一个圆必须的具备两个条件:

  圆心和半径,圆心决定圆的位置,半径决定圆的大小.

三角函数题型归纳总结

  各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次:

  第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。

  第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。

  第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。

  高考数学三角函数题型解法

  1.三角函数恒等变形的基本策略。

  (1)常值代换:特别是用"1"的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。

  (2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β= - 等。

  (3)降次与升次。(4)化弦(切)法。

  (4)引入辅助角。asinθ+bcosθ= sin(θ+ ),这里辅助角 所在象限由a、b的符号确定, 角的值由tan = 确定。

  2.证明三角等式的思路和方法。

  (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

  (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

  3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

  4.解答三角高考题的策略。

  (1)发现差异:观察角、函数运算间的差异,即进行所谓的"差异分析"。

  (2)寻找联系:运用相关公式,找出差异之间的内在联系。

  (3)合理转化:选择恰当的公式,促使差异的转化。

《三角函数》中常用的数学思想与方法举例

  数学思想方法是数学知识的精髓,是知识转化为能力的催化剂,是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识的发生、发展和应用的过程中。高考对数学思想方法的考查是以知识为依托,以能力为目的的。为此我们在新课的学习过程中,要重视对数学思想和方法的掌握。下面仅就“三角函数”一章的学习中常见的数学思想与方法举例说明。

  1数形结合思想

  例1:(2005年全国卷)设0≤x0),则+=,解得x=2∴tan=2∴tanθ===-,故选A

  例3:已知x2+y2=3,求u=++7的最小值。

  解析:运用方程转换到三角中来。∵x2+y2=3,∴令x=cosa,y=sina(-3转化与化归的思想

  例4:求函数y=(3-sinx)(3-cosx)的最值

  解析:展开函数表达式得y=sinxcosx-3(sinx+cosx)+9,观察到等式右边是关于与sinx+cosx的三角式,可设t=sinx+cosx,则原问题可转化为二次函数在闭区间上的最值问题。

  设t=sinx+cosx,则t=sin(x+),∴t∈[-,],而=[(sinx+cosx)2-1]=(t2-1),于是y=f(t)=(t2-1)-3t+9=(t-3)2+4

  原问题化归为求二次函数f(t)=(t-3)2+4在t∈[-,]上的最值问题,由于f(t)=(t-3)2+4在t∈[-,]上单调递减,故对任意的t∈[-,],总有f≤f(t)≤f(-)即-3≤f(t)≤+3∴函数y=(3-sinx)(3-cosx)的最大值是+3,最小值是-3

  4分类整合的思想

  例5:求函数y=sin2x-2acosx-a(a为定值)的最大值。

  解析:通过构造完全平方形式求最值,但需对a分类讨论。

  y=1-cos2x-2acosx-a=-(cosx+a)2+a2-a+1

  ①当a-1时,y-(-1+a)2+a2-a+1=a

高中数学三角函数知识点总结

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/

数学如何学好全等三角形知识点

  能够完全重合的两个图形叫做全等形.

  能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.

  [全等三角形的性质]

  全等三角形的对应边相等,全等三角形的对应角相等

  [找对应边、对应角的方法]

  (1)公共边是对应边,公共角是对应角

  (2)对应角所对的边是对应边,对应边所对的角是对应角

  (3)对应角所夹的边是对应边,对应边所夹的角是对应角

  (4)最长(最短)边是对应边,最大(最小)角是对应角

  (5)平行边是对应边,对顶角是对应角

  三角形全等的条件

  [边边边]

  三边对应相等的两个三角形全等.(SSS)

  [边角边]

高中数学三角函数知识点总结

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

高中数学三角函数知识点总结

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (—a)=-tanα

  sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  sin(π-α) = sinα

  cos(π-α) = -cosα

  sin(π+α) = -sinα

  cos(π+α) = -cosα

  tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  诱导公式记背诀窍:奇变偶不变,符号看象限

  万能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

高中数学三角函数知识点总结

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan

高中数学三角函数知识点总结

  1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  证:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得证

  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

调节心态的有效方法

工地宿舍管理规章制度