高中数学答题技巧和解题技巧

互联网 2024-04-01 阅读

学数学的基本技巧和方法

  2000多年前,中国的数学发现和应用走在世界的前列.现在中国的数学同样先进.大家都知道,生活、生产的各个领域都离不开数学,人类为了自己的生存必须学好数学,这就是我们学习数学的目的但对于中学生,很多同学学数学感到很吃力,抓不着有效的学习方法和要领.

  学好数学不仅是为了学习数学知识,更主要的是通过数学知识的学习培养自己的逻辑思维能力、分析问题和解决问题的能力,等等.培养能力是学好数学的根本.

  做习题就是在训练中培养这种能力,有的名家还专门寻求一些趣味数学题来进行演练.例如:伽利略的“跑马”问题;牛顿的“牛吃草”问题;鸡兔同笼问题;……这些题可以建立对数学的兴趣,加深对数学的“情感”,增强学数学的能力.

  常有同学在做作业、考试时感到时间不够用,认为是运算不熟练,不能准确而迅速地得出结果,这种理解是不对的实质上,这是因为没有养成良好的学习习惯,对所学内容理解和掌握的程度不够所致.

  有少数同学做题仅仅是为了完成老师布置的作业,不挨批评,所以只会代公式,依照老师讲的例题画葫芦,不注意分析,不注意一题多解,多题一解,陈题新解,这样就完全失去了做作业的实际意义,失去了逻辑思维能力和分析问题能力的训练和培养.所以应在做每一道习题前多思考该题有几种解法?条件变更后有何新结果?已知条件和结论互换还成立吗?做完每道题后都回头检查检查,特别是检查解题思路是否正确,运用了哪些知识点.不要盲目做题,常言道:“多想出智慧”,养成习惯,必有成效.

  对一些基本概念、公式、定理仍要记忆,这种记忆不是死记硬背,而是在理解的基础上记忆.当然,初次学习概念、公式、定理不一定就能理解,这样就要多背几遍,特别多看看概念给出前的引导语,公式、定理的推导证明的过程,寻找概念、公式、定理的特征、特点,这样自然就一回生二回熟,熟能生巧嘛.没有记忆就没有速度,就不能提高效率.茅以升能背圆周率(π)小数点后面100位数,记忆肯定有一定的方法,如记忆圆周率后面22位并不难,可借用一首打油诗:“山顶一寺一壶酒,尔乐毋杀吾,把酒吃,酒杀尔,杀不死,乐而乐.”就是用普通话的谐音记π=3.1415926535897932384626…所以记住一些公式定理,某些问题的特点,是学好数学必备的品质之一.

  另外,学习数学还要注意三个“什么”:①是什么.搞清所学的概念、知识是什么,要抓住本质特征,避免相互混淆,理清知识点之间的联系和区别;②为什么.多问几个为什么,才能加深理解,起到触类旁通的作用;③还有什么.多想想还有什么,可加强知识结构的认识,发现和挖掘新的问题.如历史上海王星的发现就是一个范例,法国人布德在计算天王星的运动轨道时,发现它老是“出轨”,是什么力量造成的呢?法国的勒维烈和英国的亚当斯经过计算同时发现了海王星,是海王星迫使天王星出轨.

  学习数学,除课堂专心听讲,积极思考外,还要及时总结,经常回顾,不断的反思探索,为此,须备“三本”.

  1.课堂笔记书

  每次测验结束之后,同学们都应把发生的错误记录到错解本上.也许大家会说,这样太浪费时间了,但它却可以让自己找出错误的原因,避免类似的错误重犯,从而提高自己的免疫能力.

  整理一道题,是一项非常艰苦的工作,不仅是一次心理上的斗争与完善,而且工作量也会很大,需要自己全身心地投入,有时知识点一环扣一环,层层扩展开去,写到最后还收不了手,于是记下自己做完这道题的解题心得.这样一来,就会书写得工工整整,分析得清清楚楚,达到整理一道题,弄懂一类题的效果.

  3.典型问题荟萃本

  对于学习过程中的巧思妙解以及一题多解(证)、一题多变的典型问题,以及一些综合压轴题与各类考试中的优秀题目,都应根据自己的解题感悟收集整理,并写明关键的提示、方法、技巧的小结,以便经常温习,反思,不断改进解法,这样使所学知识得以深化升华,有效地提高解题能力,同时还能培养创新意识和探索精神.

  当然,最一般的方法不可缺少,就是课前预习,课堂认真听讲,课后认真复习,适当读一些课外辅助读物也是相当有必要的

高中数学答题技巧和解题技巧

有效的数学学习方法

  一、扎实打好数学基础

  初中数学的基础知识是指数学教材中的概念、法则、公式、定理等必学内容以及其中蕴含的数学思想方法,还包括学习数学的经验和解题的经验,具体是以下几个方面:

  1.正确理解和掌握所学的基本概念、法则、公式、定理,把握他们之间的内在联系。

  例如:无意义,x的取值范围为.有的同学填x=1,这是错误的。因为这里有个概念,即分式无意义的概念和一个运算绝对值的法则,只有充分理解和掌握这一个概念和一个法则,才知道x-1=0,解出x=±1的正确答案。而且由于数学是一个连贯性很强的学科,正确掌握了绝对值以后会为我们初二学习二次根式、初三学习无理方程等打下良好的基础。因此,如果在学习某一内容或解一题时碰到了困难,那么很有可能就是因为有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题及时解决,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。

  2.培养数学运算能力,养成良好的学习习惯。

  每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是符合一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。

  因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,从而把握运算的方向、途径和程序,一步一步仔细完成,形成运算能力。同学们要注意,如果你有上述类似跳步的现象应及时改正,不然长期下去,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,这样就会错得越多。

  3.要学会一些必要的检验手段,培养自己的求异思维。

  中国有句老话:“百密一疏”。疏漏是难免的,如果有多种检验手段,那么就可以做到万无一失了。那么多种检验手段如何掌握呢?这就需要我们在平时学习中有意识的训练自己的求异思维。如若数学问题要求解答的不是计算结果,而且寻求解决的方法或途径,其可运用的方法不是一种,解决的途径不止一条,而可有多种多条学生解答的方式,则不一定相同而是相异的答案。这种情况则属于求异思维的运用。例如:把正方形四等分,同学们在等分时多为这些方法:我们应该问自己还有吗?决不可以满足找出一种,实际上它的方法还有好多。你能找到吗?这就是求异思维,平时有很多题目,虽然他只有一个答案,但是如果我们考虑用多种方法去解决他的话,对于我们创造性思维的发展是十分有利的。

  二、逻辑思维能力的培养。

  在数学中,一个数学概念的形成,一个数学命题的建立,一个题目的解答通常要经过对概念、命题或题目进行观察、比较、分析、综合、概括、抽象、归纳、演绎的过程,这些都需要在头脑里进行思维活动,并能正确的阐述自己的思想和观点,这就是逻辑思维能力,为了提高自己的逻辑思维能力,同学们应做到以下几点:

  1.严格遵守思维规律,养成严谨的思维习惯。

  严格遵守思维规律,推理严谨,言必有据,这是逻辑思维的核心。这首先要求我们要准确的使用概念、定义或定理、公式,能符合逻辑的判断。我们常会碰到这样的情况,当我们在证明两角相等的时候,有一种方法叫“等边对等角”。如果我们没注意到它的前题条件是在同一三角形中的话,那么就会产生错误或者当解不出题时乱做一通,出现偷换命题、假选论据、自相矛盾、循环论证论这样一系列的问题,为了防止这类现象的发生,我们必须在平时的学习中严格思维规律,严格按照正确的思维方法解题,对学习中出现的错误,要严格对待、决不马虎,培养自己严谨求实的思维习惯。

  2.重视知识的获取过程,培养抽象、概括、分析综合、推理证明能力。

  老师上课在讲解公式、定理、概念时,一般都揭示他们的形成过程,而这个过程却又是同学们最容易忽视的,认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。

数学成绩怎么快速提高

  高三数学不好就得努力补上去,提高数学成绩除了刻苦学习以外,还要掌握一些高效学习的方法。下面是分享的高三学生提高数学成绩的方法,一起来看看吧。

  高中数学重视课前预习

  高中生学习时间宝贵,对于课前预习这一项,可能不是每一科都有时间,但是要说哪个科目最需要预习,那就是非高中数学莫属了。因为高中数学知识点逻辑性很强,且又复杂难懂,提前不看一下,基础不太好的学生可能跟不上老师的讲题思路。怎么预习呢?浏览你要所学的章节,把你不理解的知识点记录下来,老师讲课的时候重点听一下。

  抓住重点

  复习课的容量不是看教师在一节课中讲了多少例题,而是看这节课上学生的有效思维量有多少。

  在高三数学教学与复习中,教师一节课可以讲不少例题。在有些课的教学与复习中,教师告诉学生的往往是经过苦苦思索而得出的最佳思路途径,最简捷的解题方法,学生听起来虽然津津有味,但就是不能形成自己的思维能力,因为这时教师告诉学生的只是成功的思考,看不到失败、受困与挣脱困境的过程,学生只是学到了一道题的解答,只是一招一式,因此,在高三数学教学与复习中,教师将同一模块内容一块复习,即将高中数学分为函数模块、立体几何模块、现代数学模块复习,即可突出知识的综合性,方法的普遍性和典型性。

  目前高考数学试题加大了对能力的考查,这就启示中学数学教学要进一步加强对能力的培养,而能力是不可能靠简单地多做几套模拟试卷,在短时间内能提高的。

  因此,如何加强数学能力的培养值得深入研究。要重视知识的形成过程,学生在学习期间不是简单地背下一些公式、定理,而是要弄清其背景和来源,为什么要导出这样的公式和定理,由此理解所学的知识,同时学会分析、解决问题的方法。

  高考是选拔性考试,每年都有一些创新,试卷中出现的新的题型需要考生自己独立解决,由此启示我们应培养学生独立解决问题的能力,而不是单纯地教师讲题,学生看题,必须让学生自己真正动手作题,积累解题的经验,培养解题的能力。

  训练方式

  备考中学习和考试其实既有区别又有联系,现实中学习努力的考生有的不一定会考试,会考试的学生不一定努力学习。当然前者远远多于后者。

  无论是会考试还是不会考试的学生,要想把试考好,对于绝大多数考生来讲,还是需要合理的训练,例如说数学学科来说,你需要在平时训练中注重这些关键词:时间分配、正确率、题型以及相关的解题方法、步骤等等。

  很多学生没有训练的目标,甚至一些考生做题的目标仅仅是为了完成老师布置的作业,这样训练方式肯定很难让自己的成绩提升上去。

  高三数学的基础学习法第一层就是看书

  它不是单纯的看书,而应该是了解之后的深入思考,甚至高三你可以撇开课本,仅仅靠思考和必要的演算来完成这一过程。

  这就需要学习中对每个问题都能亲自思考、透彻理解。我通常习惯于在遇到新概念时,自己先分析、推导一下它的性质;

  高三碰到定理、公式时自己先试着证明一下,这样再学习书本上的内容时,与自己所思考的有种比较,对知识的体会就更多些,理解也能更深一点。

  比如说,这样做后就会比较清楚某个定理为什么会有这样的限制条件,在那些情况下适用等。

  清楚了逻辑上的推理之后,还应回过头来从总体上考虑一下这些结论,考虑一下它们所描述的事实与其它数学知识间的依赖关系。

  这样做也有助于从宏观上把握知识,对其主要观念有更深刻的领悟,最好是在一个部分的知识学完后,能花点时间整理一下这部分理论,理顺其主要知识点间的联系。

  这不是简单的高三quot;复习quot,而是确定这些东西成为你quot;自己quot;的知识。这一层次要求你做到对一些基本的公式推理做到熟记于心就可以了。

  第二层就是能独立运用书中知识去解决大部分题目

  当高三理解记忆的差不多,就可以做本小节对应的练习题了。

  基础不好的同学一定要注重平时的作业,一般这些作业老师第二天都会认真评讲的,千万不要眼高手低对于作业不屑一顾。

  时间紧迫的话老师可能会挑一些大家普遍不会的题来讲,

  这个时候可能你其他题目也有问题但老师并没有讲,那你下课一定要找老师问,没什么不好意思,

  高三一轮就是注重基础的,基础夯实不了,后面的复习会有很大的隐患,而且一般老师也会比较乐意为同学解答。

  第三层也就是最高的一层

  是用经典题目去反演书中的内容,高三这个时候,题就是课本,课本就是题,这也就是为什么课本这么重要的原因。

  高三学好数学提高成绩的方法1.切忌眼高手低

  quot;眼高手低quot;是很多考生在复习数学时易犯的错误,很多考生对基础性的东西不屑一顾,认为这些内容很简单,用不着下劲复习,还有的考生只是quot;看quot,认为看懂就行了,很少下笔去做题,结果在最后的考试中眼熟手生,难以取得好的成绩。所以,在复习数学时一定要脚踏实地,一步一个脚印,就像下象棋,要取敌方老帅,就要老老实实战败所有兵卒,稳扎稳打,步步为营,这样的话,才能以不变应万变,在最后的实考中占据主动!

  2.基础是提高的前提

  基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交叉和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水平,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自己经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为在这个时期考生已经认识到了自己的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,考研本来就是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。只要坚持下去,就有成功的希望。

  3.按题型分类进行

  解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。例如复习大全当中的典型例题解析部分,就对各个章节的题目都进行了细致划分,且在题目解答部分给出一题多解的多种解题方法,极大程度拓宽同学们的思路,掌握多种解题方法和要领。第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。

  4.不可忽视例题

  考生在备考时还要多做例题,而不仅仅是练习题。做例题时应遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先认真做;无论做出与否都要把自己的思路详记于空白处,尤其是做不出的,一定把自己真实的思考方式记录在案,留待日后分析,而不是对了答案就万事大吉,这样做可以迅速的找到做题的感觉。总之,考生在做题目时,要养成良好的做题习惯,做一个quot;有心人quot,认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。

  对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。

  5.不要为做题而做题

  当然,一味的靠做题来提高数学能力也是不足取的。曾有一个考生,平时的解题能力很高,但最后的考试成绩却不是很理想,谈到自己失利的原因时,他说,自己平时几乎全部靠做题来提高水平,而对知识点缺乏更高层次上的把握和运用,导致遇到陌生的题目时,得分率严重下降。所以考生不能为做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的把握和运用。要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。

高中数学学习方法总结

  1,心态要放平和点,不要老觉得自己数学差学不好什么的,心理作用很重要的,所以要有自己能学好的信心,相信自己的能力

  2,数学最重要的就是理论+实践,理论就是上课一定认真听,把每个知识点记住并弄懂,定义什么的分清楚,然后实践就是课后多做题,这也是最重要的,只有通过不断地多做题,才能熟能生巧,加深映像,并能增强理解能力

  3,课后的习题都比较简单,是根据课本知识点相应来编写的,所以那点题是不够的,最好是hi自己买一本同步的资料,题目答案对应的那种,先自己做,再对答案改错。

  4,不懂得要多问老师同学,不要怕丑,这也没什么丑的,相信他们也一定会耐心乐意为你解答的

高中的解题技巧

  ⑶由此,作者树立的正确的观点是什么

  6、常见考点

  ①、议论文的论点考点:

  第一,分清所议论的问题及针对这个问题作者所持的看法(即分清论题和论点)。

  第二,注意论点在文中的位置:

  (1)在文章的开头,这就是所谓开宗明义、开门见山的写法。

  (2)在文章结尾,就是所谓归纳全文,篇末点题,揭示中心的写法。这种写法在明确表达论点时大多有。所以,总之,因此,总而言之,归根结底等总结性的词语。

  第三、分清中心论点和分论点:分论一般位于段首或有标志性词语:首先、其次、第三等。

  第四、要注意论点的表述形式:有时题目就是中心论点。一篇议论文只有一个中心论点。

  第五、通过论据来反推论点:论据是为证明论点服务的,分析论据可以看出它证明什么,肯定什么,支持什么,这就是论点。

  ②、议论文的论据考点:论据是论点立足的根据,一般全为事实论据和道理论据。

  1、用事实作论据。事例必须真实可靠,有典型意义,能揭示事物本质并与论点有一定的逻辑联系。议论文中,对所举事例的叙述要简明扼要,突出与论点有直接关系的部分。明确论据时,不仅要知道文中哪些地方用了事实论据,还要会概括事实论据。概括时,要做到准确,必须依据论点将论据本质特点把握住,然后用确切的语言进行表述。

  2、用作论据的言论,应有一定的权威性,直接引用时要原文照录,以真核对,不能断章取义;间接引用时不能曲解原意。

  ③、议论文的结构、层次考点:结构有:并列式结构、对照式结构、层进式结构、总分式结构。

数学学习方法如何攻克三种题目的解法

  数学试题分为选择题、填空题和解答题三种题型,选择题、填空题是基础,共76分,解答题是提高分数的关键,攻克这三种题目的解法,特别是选择题的解法,它解法灵活多样,如:直接法、代入法、特值法、排除法、数形结合法等。掌握多种这些解题方法,会使解答试题速度快而准确,同时为解答最后六道解答题赢得了更多的时间。

  (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

  (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

  (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

  (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

  (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

  (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

  (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

  (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

  高二数学学习方法之六个概念方法

  一、温故法

  学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

  二、操作法

  对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。

  三、类比法

  这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

  四、喻理法

  为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.

  五、置疑法

  这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。

  六、创境法

  如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。

  高二数学学习方法之积累考试经验

  本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

  数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

  高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度,其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。

  做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

  复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

  数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。

  那么如何抓基础呢

  1、看课本;

  2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。

  3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化

  与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

  4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。

  观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。

  死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。

  5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。

中国古代数学解题方法

  1.早在甲骨文中出现的十进位制记数方法,就是早期的数学计算思想;商代的骨尺和牙尺上也有寸和分的刻度,主要的意义在便于计算。《九章算术》中开放紧纳性的表述系统,是按个别到一般的方法建立起来的,是由一个或几个问题归纳出基本规律和一般解法,再把各种算法进行综合,得到解决某领域中各种问题的方法,再把各领域的方法形成一章,汇成《九章算术》,形成抽象化的数学计算思想2.《周易》中的六十四别卦,其核心是八经卦,它的符号表示实际上是一种特殊的数表,是由一堆数字组合而成,有限的符号在不同的位置上相互配置,组合生成无穷多的意义,形成早期的组合的数学思想,是离散数学的基础。

  3.《礼记》中指出初等教育要有数的教育,《周礼》中提到数的教育要有日常生活中的计算。成为早期的培养人才的“经世致用”的数学实用思想。《周髀算经》中系统的把数学应用在天文地理中,突出了数学的实用思想。

  4.三国时代的魏人刘徽为《九章算术》作注解10卷时提出的“出入相补原理”成为我国最早的数形结合思想,尤其重要的是他所创造的“割圆术”使极限思想在世界上开了先例。

  5.庄子天下篇中有一句话是“一日之锤,日取其半,万世不竭”首次提出了“无限的思想”进而出现了无限向有限转化的辩证思想。

  与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

  课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

  课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。概括中国古代数学思想有如下的特点:经世致用的实用思想;算法化、模型化、数值化、离散化的计算思想;朴素的辩证思想;极限思想;数形结合思想等。成为数学问题解决的常用的思想方法。

高一数学解题方法总结

  一、《集合与函数》

  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

  二、《立体几何》

  点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

  垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

  方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

  立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

  异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

  三、《平面解析几何》

  有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

  笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

  两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

  三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

  四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

  解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

  言简意赅易上口,结合课本胜一筹。始生之物形必丑,抛砖引得白玉出。

高中数学答题技巧

  审题是解题的第一步,如果在第一步出现错误,那么你一定会失分.我发现同学们在解答概率题时由于审题不够细心,导致类型定位不准、情况出现重复或者遗漏等错误比较普遍.今特选几道有代表性的例子予以分析,望大家引以为戒.

  一、主观臆断导致错误

  例1从装有36粒药丸的瓶中,随意倒出若干粒(至少一粒),则倒出奇数粒的概率与倒出偶数粒的概率的大小关系为.

  (A)倒出奇数粒的概率大

  (B)倒数奇数粒的概率小

  (C)二者相等

  (D)不能确定

  错解:因为倒出的是奇数粒还是偶数粒机会相等,即倒出奇数粒的概率与倒出偶数粒的概率都为 .故选(C).

  剖析:这是一个等可能概率类型,因为任何一粒药丸都有倒出与不倒出两种可能,所以总的基本事件个数为 ,其中倒出的为奇数粒的事件数为 ,倒出偶数粒的事件数为 .所以应选(A).本题如果允许倒出0粒,选(C)就是正确的了,都是“至少一粒”惹的祸!

  二、混淆类型导致错误

  例2某家庭电话,打进的电话响第一声时被接的概率为 ,响第二声时被接的概率为 ,响第三声时被接的概率为 ,响第四声时被接的概率为 ,则电话在响前四声内被接的概率为.

  (A) (B) (C) (D)

  错解:记打进的电话响第一声时被接为事件A,打进的电话响第二声时被接为事件B,打进的电话响第三声时被接为事件C,打进的电话响第四声时被接为事件D.则电话在响前四声内被接的概率

  .故选(C).

  剖析:以上求解过程中错误地将A、B、C、D四个事件的关系理解为相互依赖的条件概率,而实际它们之间是彼此互斥的所以电话在响前四声内被接的概率 .故选(B).

  三、遗漏情况导致错误

  例3某种产品有2只次品和3只正品,每只产品均不相同,需要进行科学测试才能区分出来,今每次取出一只测试.通过三次测试,2只次品被检测出来的概率为多少

  错解:这是一个等可能的概率类型.记“所取的三件产品恰有两件次品”为事件A.完成事件A共有 种不同方法.而从5件产品中任取3件共有 种不同取法.所以所求事件概率为 .

  剖析:以上解法中忽略了对适合要求的事件B:“所取出的三件产品均为正品”的考虑,即出现了漏解现象.因此所求事件的概率为 .

  四、重复计算导致错误

  例4从5 名男生和2名女生中选3人参加演讲比赛.求所选3人中至少有一名女生的概率.

  错解:该题是一道等可能事件的概率类型.所有的基本事件个数为,其中适合要求的事件个数分两步求积:①从2名女生中先选1人,有 种不同方法;②再从余下的6名学生中任选2人,有 种不同方法.故所求概率为 .

高中数学解题的技巧

  为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

  一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

  基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

  一、 熟悉化策略

  所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

  一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

  常用的途径有:

  (一)、充分联想回忆基本知识和题型:

  按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

  (二)、全方位、多角度分析题意:

  对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

  (三)恰当构造辅助元素:

  数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

  数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

  二、简单化策略

  所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

  简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

  因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

  解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

  1、寻求中间环节,挖掘隐含条件:

  在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

  因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

  2、分类考察讨论:

  在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

  3、简单化已知条件:

  有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

  4、恰当分解结论:

  有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

  三、直观化策略:

  所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

  (一)、图表直观:

  有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

  对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

  (二)、图形直观:

  有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

  (三)、图象直观:

  不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

  四、特殊化策略

  所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

  五、一般化策略

  所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

  六、整体化策略

  所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

  七、间接化策略

  所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

高级职称答辩自我介绍

数学工程问题解题技巧