初二数学知识点归纳
初中数学二次函数的知识点总结
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动单位,再向下移动单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=-x当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
七年级上册数学知识点总结
第一章 有理数
1.1正数和负数
①把0以外的数分为正数和负数。0是正数与负数的分界。
②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
1.2有理数
1.2.1有理数
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
1.2.2数轴
①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数
①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数 负数的相反数是正数
1.2.4绝对值
①绝对值 |a|
②性质:正数的绝对值是它的本身
负数的绝对值的它的相反数
0的绝对值的0
1.2.5数的大小比较
①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
1.3.2有理数的减法
①减去一个数,等于加这个数的相反数。a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba
⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
1.4.2有理数的除法
①除以一个不等0的数,等于乘以这个数的倒数。
②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
1.5有理数的乘方
1.5.1乘方
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
②负数的奇次幂是负数,负数的偶次幂的正数。
③正数的任何次幂都是正数,0的任何正整数次幂都是0。
④做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
1.5.2科学记数法。
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
1.5.3近似数
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
②近似数与准确数的接近程度,可以用精确度表示。
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章 整式的加减
2.1整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
2.2 整式的加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章 一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式
②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二) 去括号与去分母
①一般步骤:1.去分母
2.去括号
3.移项
4.合并同类项
5.系数化为一
3.4实际问题与一元一次方程
利用方程不仅能求具体数值,而且可以进行推理判断。
第四章 图形认识初步
4.1多姿多彩的图形
4.1.1几何图形
①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
4.1.2点,线,面,体
①几何体也简称体。
②包围着体的是面。面有平的面和曲的面两种。
③面和面相交的地方形成线。(线有直线和曲线)
④线和线相交的地方是点。(点无大小之分)
⑤点动成线 ,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
⑧线段的比较:1.目测法 2.叠合法 3.度量法
4.2 直线,射线,线
①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。(两点之间,线段最短)
⑦连接两点间的线段的长度,叫做这两点的距离。
4.3 角
4.3.1角
①角也是一种基本的几何图形。
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。
③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
⑤以度,分,秒为单位的角的度量制,叫做角度制。
4.3.2角的比较与运算
①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
4.3.3余角和补角
①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。
②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
③等角的补角相等。
④等角的余角相等。
初中数学《整式》知识点总结
单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:
1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
初中数学知识点总结
一、基本知识
一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0.两个负数比较大小,绝对值大的反而小.
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变.
减法:减去一个数,等于加上这个数的相反数.
乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数.
除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数.
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的
2、实数 无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数.
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数、0的立方根是0、负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数.
实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示.
3、代数式
代数式:单独一个数或者一个字母也是代数式.
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变.
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式.②一个单项式中,所有字母的指数和叫做这个单项式的次数.③一个多项式中,次数最高的项的次数叫做这个多项式的次数.
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项.
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样.
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式.
方法:提公因式法、运用公式法、分组分解法、十字相乘法.
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0.②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变.
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
除法:除以一个分式等于乘以这个分式的倒数.
加减法:①同分母分式相加减,分母不变,把分子相加减.②异分母的分式先通分,化为同分母的分式,再加减.
分式方程:①分母中含有未知数的方程叫分式方程.②使方程的分母为0的解称为原方程的增根.
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程.②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式.
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1.
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组.
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解.
解二元一次方程组的方法:代入消元法/加减消元法.
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点.也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法.在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a.利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
2、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式.②不等式的两边都加上或减去同一个整式,不等号的方向不变.③不等式的两边都乘以或者除以一个正数,不等号方向不变.④不等式的两边都乘以或除以同一个负数,不等号方向相反.
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解.②一个含有未知数的不等式的所有解,组成这个不等式的解集.③求不等式解集的过程叫做解不等式.
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式.
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.③求不等式组解集的过程,叫做解不等式组.
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变.
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
3、函数
变量:因变量,自变量.
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量.
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数.②当B=0时,称Y是X的正比例函数.
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.②正比例函数Y=KX的图象是经过原点的一条直线.③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限.④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少.
二空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的②面与面相交得线,线与线相交得点.③点动成线,线动成面,面动成体.
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体.②N棱柱就是底面图形有N条边的棱柱.
截一个几何体:用一个平面去截一个图形,截出的面叫做截面.
视图:主视图,左视图,俯视图.
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.②圆可以分割成若干个扇形.
2、角
线:①线段有两个端点.②将线段向一个方向无限延长就形成了射线.射线只有一个端点.③将线段的两端无限延长就形成了直线.直线没有端点.④经过两点有且只有一条直线.
比较长短:①两点之间的所有连线中,线段最短.②两点之间线段的长度,叫做这两点之间的距离.
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.②一度的1/60是一分,一分的1/60是一秒.
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.始边继续旋转,当他又和始边重合时,所成的角叫做周角.③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
平行:①同一平面内,不相交的两条直线叫做平行线.②经过直线外一点,有且只有一条直线与这条直线平行.③如果两条直线都与第3条直线平行,那么这两条直线互相平行.
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直.②互相垂直的两条直线的交点叫做垂足.③平面内,过一点有且只有一条直线与已知直线垂直.
垂直平分线:垂直和平分一条线段的直线叫垂直平分线.
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点.
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线.
数学立方根知识点总结归纳
知识要领:如果一个数x的立方等于a,即x的三次方等于a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根。
读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。
求一个数a的立方根的运算叫做开立方。
立方根的性质:
⑴正数的立方根是正数.⑵负数的立方根是负数.⑶0的立方根是0.一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(cube root,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
立方和开立方运算,互为逆运算。
互为相反数的两个数的立方根也是互为相反数。
负数不能开平方,但能开立方。
立方根如何与其他数作比较?⑴做这两个数的立方
⑵作差
⑶比较被开方数(如三次根号3大于三次根号2)
任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个.
平方根与立方根的区别与联系
一、 区别
⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。
⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。
二、 连系
二者都是与乘方运算互为逆运算
知识点一:
平方根的概念:若x2=a(a≥0),则x叫做a的平方根,记作x=±,求一个非负数的平方根的运算叫做开平方.开平方与平方互为逆运算.
例1
的平方根是( ).
A.±9 B. ±3 C.9 D.3
解:因为
=9,所以
的平方根就是9的平方根,即±
=±3,故选择B.
注:应现将
化简后再求值.
知识点二:
算术平方根的概念:正数a的正的平方根叫做a的算术平方根,记作,0的算术平方根是0.
例2若a<0,则a2的算术平方根是( ).
A.-a B.a C.±a D. ±
解:当a<0时,
=-a,故选择A.
例3一个数的算术平方根是a,则比这个数大5的数是( ).
A.a+5 B.a-5 C. a2+5 D. a2-5
解:一个数的算术平方根是a,则这个数是a2,故比这个数大5的数是a2+5,从而选择C.
知识点三:
平方根及算术平方根的性质:1.正数有两个平方根,它们互为相反数;2. 0的平方根是0;3.负数没有平方根;4.一个非负数的算术平方根是非负数,即a≥0.
例4若平方根是2a-3和a-12,求值.
解:由正数有两个平方根,它们互为相反数知,(2a-3)+(a-12)=0,解得a=5,所以(2a-3)2=72=49.
例5若2a-3和a-12是平方根,求的值.
解析:本例与例4貌似一样,其实不然.因为"若平方根是2a-3和a-12",得知2a-3和a-12互为相反数,而"若2a-3和a-12是平方根",可得知2a-3和a-12相等或互为相反数.(1)当2a-3=a-12时, a= -9.所以2a-3=-18-3=-21,所以(-21)2=441.(2)当(2a-3)+(a-12)=0时, a=5,所以2a-3=10-3=7,所以故或=49.
知识点四:
立方根的概念及性质: 若x3=a,则x叫做a的立方根,记作x=.0的立方根是0,任何实数都有立方根,并且只有一个,同时立方根的符号与其本身符号相同.
知识点五:
利用计算器求平方根、立方根等.
例8(陕西省)用计算器比较大小:
(填">"、"="、"<").
解析:这类题是考查学生使用计算器过程的题目,要注意按键顺序.故填>.
初中数学知识点总结:圆
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>R+r
②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21.定理 相交两圆的连心线垂直平分两圆的公共弦
22.定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初中数学知识点总结:平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
数学知识点归纳总结
我现在带初三数学,课本讲授已经结束,进入总复习阶段,把平常教学中的一些思想说说,主要谈谈归纳总结。归纳是思维形式重要的一种,属抽象思维。众所周知知识有感性与理性之区分,在认知能力上同样有感知与理智之区别,比如小的时候,我们以感性知识接受为主,我们通常也用一些感知的学习方式接受知识,就是用机械的死记硬背方法,但是学习成绩也不会很差。可是到了中学,大部分的知识属于理性知识,假如你仍然用感性的死记方法,这当然是行不通的。那么学会学习的核心内容就是学会思维。由此,学会分析与归纳就是要改变原来的学习方式。为了引起我们的重视,特意把归纳学习法也作为十大学习法之一。所说的归纳学习法就是通过归纳思维,形成对知识的特点、中心、性质的识记、理解与运用。当然,把它当成一种学习方法来说,归纳学习法主要靠归纳思维,它主要把分析作为前提,但它与归纳思维本身是不等同的。由此可见,归纳学习法指的是要善于去归纳事物的特点、性质,把握句子、段落的精神实质,同时,以归纳为基础,搜索相同、相近、相反的知识放在一起进行识记与理解。其主要的优点就是能起到更快地记忆、理解作用,其实对于我,在讲课中也用这样的方法。我们举例说明。
一、我们学习了相似后,利用相似原理测物高
主要分几种情况:利用太阳光,因为在同一时刻,同一地点,太阳光线与地面的夹角相同,可以得到两个相似的三角形,我们可以测物高。主要方法有:
①测量示意图;②立标杆法;③海岛算经法;④镜子反射法。
二、我们学习完锐角三角函数后,利用解直角三角形可以测物高
主要分如下几种情况:
①如图,小明欲利用测角仪测量树的高度。已知他离树的水平距离BC为10测角仪的高度CD为1.5测得树顶A的仰角为33°,求树的高度AB。
要求学生能借助仰角构造直角三角形并解直角三角形
②如图为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50此时观测气球,测得仰角为45°。若小明的眼睛离地面1.6小明如何计算气球的高度呢
③热气球的探测器显示,从热气球看一栋高楼顶部的仰角为60°,看这栋高楼底部的俯角为30°,热气球与高楼的水平距离为66 这栋高楼有多高
④线段AB,DC分别表示甲、乙两建筑物的高。某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B处测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为请你通过计算用含α、β、式子分别表示出甲、乙两建筑物的高度,借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形是解题关键。
⑤在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD。(精确到0.1
归纳总结的过程是研究发现知识内部规律和与外部联系的过程,说白了也就是“悟”的过程。在学习时假如能养成随时随地归纳总结的好习惯,提高学习效率和学习成绩是相当快的。好多学生的学习成绩达到一定程度,无论怎样努力学习,成绩就是那么多,再也上不去了,有一些根本原因就是不会去总结归纳,或者说在学习时落掉了这个很重要的学习环节。以上是对测物高的一个总结,拿它为例说说如何归纳总结,在这些解题中,应用了方程思想、转化思想、数形结合思想还有分类讨论思想。由此也说说我个人看法,在平常的教学复习当中,把思想方法贯穿在整个教学过程,在解题训练过程中引导学生以数学思想为主线,并进行知识点概括与归纳整理时,从不同角度、不同问题、不同内容、不同方法中来寻找同一思想。章节复习时,特别强调,在对知识复习的同时,把统领知识的思想方法概括出来,增加学生对数学思想方法的应用意识,从而有利于学生更透彻地理解所学知识,提高独立分析、解决问题的能力。每章每节的知识是孤立的、分散的,要把它们形成一个知识体系,每天课后必须有小结。对所学知识要有一个概括,必须掌握关键在哪和重点知识。对比易混淆的概念,并理解它们。比如我现在初三总复习了,学习一个专题时,要把各章中分散的知识点连成线、辅以面、结成网,使学到的知识规律化、系统化、结构化,运用起来才能联想畅通,思维活跃。一个善于学习的人,首先是一个喜欢思考的人,是一个善于不断归纳总结的人。越是善于归纳总结,大脑中储存的知识就越丰富越系统。由此,学习过程中一个非常重要环节就是归纳总结。
初中数学知识点归纳总结口诀
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二*(*公式)
因式分解
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
上册数学知识点归纳总结
1全等三角形的对应边、对应角相等
2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5边边边公理(SSS)有三边对应相等的两个三角形全等
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的平分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的平分线上
9角的平分线是到角的两边距离相等的所有点的集合
10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21推论1等腰三角形顶角的平分线平分底边并且垂直于底边
22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23推论3等边三角形的各角都相等,并且每一个角都等于60°
24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25推论1三个角都相等的三角形是等边三角形
26推论2有一个角等于60°的等腰三角形是等边三角形
27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28直角三角形斜边上的中线等于斜边上的一半
29定理线段垂直平分线上的点和这条线段两个端点的距离相等
30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32定理1关于某条直线对称的两个图形是全等形
33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37勾股定理的逆定理如果三角形的三边长a、b、c相关系a^2+b^2=c^2,那么这个三角形是直角三角形
38定理四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理n边形的内角的和等于(n-2)×180°
41推论任意多边的外角和等于360°
42平行四边形性质定理1平行四边形的对角相等
43平行四边形性质定理2平行四边形的对边相等
44推论夹在两条平行线间的平行线段相等
45平行四边形性质定理3平行四边形的对角线互相平分
46平行四边形判定定理1两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3对角线互相平分的四边形是平行四边形
49平行四边形判定定理4一组对边平行相等的四边形是平行四边形
50矩形性质定理1矩形的四个角都是直角
51矩形性质定理2矩形的对角线相等
52矩形判定定理1有三个角是直角的四边形是矩形
53矩形判定定理2对角线相等的平行四边形是矩形
54菱形性质定理1菱形的四条边都相等
55菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1四边都相等的四边形是菱形
58菱形判定定理2对角线互相垂直的平行四边形是菱形
59正方形性质定理1正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1关于中心对称的两个图形是全等的
62定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理如果两个图形的对应点连线都经过某一点,并且被这个点平分,那么这两个图形关于这个点对称
64等腰梯形性质定理等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
69推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
70推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
71三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
72梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
73(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d
74(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
75(3)等比性质如果a/b=c/d=…=(b+d+…+n≠0),那么(a+c+…+(b+d+…+n)=a/b
76平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
77推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
78定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
79平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
80定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
81相似三角形判定定理1两角对应相等,两三角形相似(ASA)
82直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
83判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
84判定定理3三边对应成比例,两三角形相似(SSS)
85定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
86性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
87性质定理2相似三角形周长的比等于相似比
88性质定理3相似三角形面积的比等于相似比的平方
89任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值