二次函数知识点

互联网 2024-04-01 阅读

数学重要知识点

  二次根式

  1.二次根式:一般地,式子叫做二次根式.

  注意:(1)若这个条件不成立,则不是二次根式;

  (2)是一个重要的非负数,即;≥0.

  2.重要公式:(1),(2);

  3.积的算术平方根:

  积的算术平方根等于积中各因式的算术平方根的积;

  4.二次根式的乘法法则:.

  5.二次根式比较大小的方法:

  (1)利用近似值比大小;

  (2)把二次根式的系数移入二次根号内,然后比大小;

  (3)分别平方,然后比大小.

  6.商的算术平方根:,

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

  7.二次根式的除法法则:

  (1);(2);

  (3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.

  8.最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

  (4)二次根式计算的最后结果必须化为最简二次根式.

  10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.

  12.二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

  (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.

  一元二次方程

  1.一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、c;其中a、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.

  2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.

  3.一元二次方程根的判别式:当ax2+bx+c=0(a≠0)时,Δ=b2-4ac叫一元二次方程根的判别式.请注意以下等价命题:

  Δ>0=有两个不等的实根;Δ=0=有两个相等的实根;Δ<0=无实根;

  4.平均增长率问题--------应用题的类型题之一(设增长率为x):

  (1)第一年为a,第二年为a(1+x),第三年为a(1+x)2.

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.

  旋转

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

  这两个图形中的对应点叫做关于中心的对称点.

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

  (2)关于中心对称的两个图形是全等图形.

  5、中心对称图形:

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

  6、坐标系中的中心对称

  两个点关于原点对称时,它们的坐标符号相反,

  即点P(x,y)关于原点O的对称点P′(-x,-y).

  圆

  1、(要求深刻理解、熟练运用)

  1.垂径定理及推论:如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理”“弧径定理”“中垂定理”.几何表达式举例:∵CD过圆心∵CD⊥AB3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1)∵∠AOB=∠COD∴AB=CD(2)∵AB=CD∴∠AOB=∠COD(3)……………4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1)(2)(3)(4)几何表达式举例:(1)∵∠ACB=∠AOB∴……………(2)∵AB是直径∴∠ACB=90°(3)∵∠ACB=90°∴AB是直径(4)∵CD=AD=BD∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ABCD是圆内接四边形∴∠CDE=∠ABC∠C+∠A=180°6.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径∵AB是切线∴OC⊥AB9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.(1)(2)几何表达式举例:(1)∵PA·PB=PC·PD∴………(2)∵AB是直径∵PC⊥AB∴PC2=PA·PB11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上.(1)(2)几何表达式举例:(1)∵O1,O2是圆心∴O1O2垂直平分AB(2)∵⊙1、⊙2相切∴O1、A、O2三点一线12.正多边形的有关计算:(1)中心角n,半径RN,边心距rn,边长an,内角n,边数n;(2)有关计算在RtΔAOC中进行.公式举例:(1)n=;(2)

  二定理:

  1.不在一直线上的三个点确定一个圆.

  2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

  3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.

  三公式:

  1.有关的计算:

  (1)圆的周长C=2πR;(2)弧长L=;(3)圆的面积S=πR2.

  (4)扇形面积S扇形=;

  (5)弓形面积S弓形=扇形面积SAOB±ΔAOB的面积.(如图)

  2.圆柱与圆锥的侧面展开图:

  (1)圆柱的侧面积:S圆柱侧=2πrh;(r:底面半径;h:圆柱高)

  (2)圆锥的侧面积:S圆锥侧==πrR.(L=2πr,R是圆锥母线长;r是底面半径)

  四常识:

  1.圆是轴对称和中心对称图形.

  2.圆心角的度数等于它所对弧的度数.

  3.三角形的外心两边中垂线的交点三角形的外接圆的圆心;

  三角形的内心两内角平分线的交点三角形的内切圆的圆心.

  4.直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)

  直线与圆相交d<r;直线与圆相切d=r;直线与圆相离d>r.

  5.圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)

  两圆外离d>R+r;两圆外切d=R+r;两圆相交R-r<d<R+r;

  两圆内切d=R-r;两圆内含d<R-r.

  6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.

二次函数知识点

二次函数

  第12讲、二次函数

  1、二次函数的基本概念。

  2、结合已知条件确定二次函数的表达式,利用待定系数法求二次函数的解析式。

  3、根据二次函数的图象及性质解决相关问题,如不等式、一元二次方程。

  4、二次函数图象的平移。

  5、二次函数与实际问题,二次函数与综合问题(与几何、函数、方程等的综合)。

  1、定义:一般的,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数。其中x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数、常数项。

  2、二次函数的图象是一条抛物线。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。a越大,抛物线的开口越小;a越小,抛物线的开口越大。

  y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+ky=ax2+bx+c对称轴y轴y轴x=hx=h顶点(0,0)(0,k)(h,0)(h,k)a0时,顶点是最低点,此时y有最小值;a0时,顶点是最高点,此时y有最大值。最小值(或最大值)为0(k或)。增减性a0x0(h或)时,y随x的增大而减小;x0(h或)时,y随x的增大而增大。即在对称轴的左边,y随x的增大而减小;在对称轴的右边,y随x的增大而增大。a0x0(h或)时,y随x的增大而增大;x0(h或)时,y随x的增大而减小。即在对称轴的左边,y随x的增大而增大;在对称轴的右边,y随x的增大而减小。

  3、二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的联系:

  (1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根;

  (2)抛物线与x轴的交点和一元二次方程的根的关系

  抛物线y=ax2+bx+c与x轴的位置一元二次方程ax2+bx+c=0的解b2-4ac0两个公共点两个不相等的实数根b2-4ac=0一个公共点两个相等的实数根b2-4ac0没有公共点没有实数根

  4、抛物线与的特殊关系。

  当时,;当时,;

  若,即当时,;若,即当时。

  5、抛物线图像的平移。【口诀:左加右减,上加下减】

  平移方向及距离平移前平移后简记向左平移个单位左加向右平原个单位右减向上平移个单位上加向下平移个单位下减

  1、对于二次函数,有下列四个结论:①它的对称轴是直线x=1;②设,,则当x2x1时,有y2y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0x2时,y0.其中正确的结论的个数为

  A.1B.2C.3D.4

  2、二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①b?4ac0;②4a?2b+c0;③2a?b=0;④a,其中正确结论的个数是

  A.4个B.3个C.2个D.1个

  3、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为___.

  4、如图,抛物线与x轴交于A(?1,0),B(3,0)两点。

  (1)求该抛物线的解析式;

  (2)求该抛物线的对称轴以及顶点坐标。

  5、如图,抛物线y=与x轴交于A.B两点,且B(1,0)

  (1)求抛物线的解析式和点A的坐标;

  (2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;

  (3)如图2,已知直线y=23x?49分别与x轴、y轴交于C.F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由。

  6、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。

  (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式。

  (2)求该批发商平均每天的销售利润元)与销售价x(元/箱)之间的函数关系式。

  (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少

  7、一座拱桥的轮廓是抛物线型(如图1),拱高6跨度20相邻两支柱间的距离均为5

  (1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;

  (2)求支柱EF的长度;

  (3)拱桥下地平面是双向行车道(正中间是一条宽2隔离带),其中的一条行车道能否并排行驶宽2高3三辆汽车(汽车间的间隔忽略不计)?请说明你的理由。

  1、二次函数(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是

  A.函数有最小值

  B.对称轴是直线x=12

  C.当?1x2时,y0

  D.当x12,y随x的增大而减小

  2、已知二次函数(a≠0)的图象如图所示,对称轴是直线x=?1,下列结论:①abc0;②2a+b=0;③a?b+c0;④4a?2b+c0。其中正确的是

  A.①②B.只有①C.③④D.①④

  3、要将抛物线平移后得到抛物线y=x2,下列平移方法正确的是

  A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位

  C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位

  4、将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是(?)

  A.y=(x?4)2?6B.y=(x?4)2?2C.y=(x?2)2?2D.y=(x?1)2?3

  5、如图,抛物线与y轴交于点C,点D(0,1),点P是抛物线上的动点,若△PCD是以CD为底的等腰三角形,则点P的坐标为___.

  6、、如图,某足球运动员站在点O处练习射门,将足球从离地面0.5处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:与飞行时间t(单位:s)之间满足函数关系,已知足球飞行0.8s时,离地面的高度为3.5

  (1)足球飞行的时间是多少时,足球达到最大高度?最大高度是多少

  (2)若足球飞行的水平距离x(单位:与飞行时间t(单位:s)之间具有函数关系x=10t.已知球门的高度为2.44如果该运动员正对球门射门时,离球门的水平距离为28他能否将球直接射入球门

  7、如图①是一张眼镜的照片,两镜片下半部分轮廓可以近似看成抛物线形状。建立如图②直角坐标系,已知左轮廓线端点A.B间的距离为4c点A.B与右轮廓线端点D.E均在平行于x轴的直线上,最低点C在x轴上,且与AB的距离CH=1c轴平分BD,BD=2c解答下列问题:

  (1)求轮廓线ACB的函数解析式;(写出自变量x的取值范围)

  (2)由(1)写出右轮廓线DFE对应的函数解析式及自变量x的取值范围。

  8、跳绳时,绳甩到最高处时的形状是抛物线。正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.

  (1)求该抛物线的解析式;

  (2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;

  (3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围___.

  9、已知抛物线y=?x+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.

  (1)写出A,B,C三点的坐标;

  (2)若点P位于抛物线的对称轴的右侧:

  ①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;

  ②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;

  ③设AP的中点是R,其坐标是,请直接写出的关系式,并写出取值范围。

  1、一座拱桥的轮廓是抛物线型(如图1),拱高6跨度20相邻两支柱间的距离均为5

  (1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;

  (2)求支柱EF的长度;

  (3)拱桥下地平面是双向行车道(正中间是一条宽2隔离带),其中的一条行车道能否并排行驶宽2高3三辆汽车(汽车间的间隔忽略不计)?请说明你的理由。

  2、如图,在平面直角坐标系中,已知抛物线y=x+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,?3),动点P在抛物线上。

  (1)b=___,c=___,点B的坐标为___;(直接填写结果)

  (2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

  (3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线。垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标。

  3、对于二次函数y=?14+x?4,下列说法正确的是

  A.当x0时,y随x的增大而增大B.当x=2时,y有最大值?3

  C.图象的顶点坐标为(?2,?7)D.图象与x轴有两个交点

  4、已知O为坐标原点,抛物线y=ax+bx+c(a≠0)与x轴相交于点A(x,0),B(x,0).与y轴交于点C,且O,C两点之间的距离为3,x·x<0,x+x=4,点A,C在直线y=-3x+t上.

  (1)求点C的坐标;

  (2)当y随着x的增大而增大时,求自变量x的取值范围;

  (3)将抛物线y向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y向下平移n个单位,当平移后的直线与P有公共点时,求2n-5n的最小值.

数学二次函数知识点总结

  1二次函数及其图像

  二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2bxc(a不为0)。其图像是一条主轴平行于y轴的抛物线。

  一般的,自变量x和因变量y之间存在如下关系:

  一般式

  y=ax∧2;bxc(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);

  顶点式

  y=a(x∧2k(a≠0,a、为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-)对称轴为x=-顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

  交点式

  y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];

  重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

  牛顿插值公式(已知三点求函数解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距)

  求根公式

  二次函数表达式的右边通常为二次三项式。

  x是自变量,y是x的二次函数

  x1,x2=[-b±(√(b^2-4ac))]/2a

  (即一元二次方程求根公式)

  求根的方法还有因式分解法和配方法

  在平面直角坐标系中作出二次函数y=2x的平方的图像,

  可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像

  如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

  注意:草图要有1本身图像,旁边注明函数。

  2画出对称轴,并注明X=什么

  3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质

  轴对称

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  顶点

  2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。

  开口

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  大,则抛物线的开口越小。

  决定对称轴位置的因素

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

  当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b 2a="">0,所以b/2a要小于0,所以a、b要异号

  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

  决定抛物线与y轴交点的因素

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  抛物线与x轴交点个数

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x<-b/2a}上是减函数,在

  {x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y≥4ac-b^2/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2c(a≠0)

  特殊值的形式

  7.特殊值的形式

  ①当x=1时y=abc

  ②当x=-1时y=a-bc

  ③当x=2时y=4a2bc

  ④当x=-2时y=4a-2bc

  二次函数的性质

  8.定义域:R

  值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

  正无穷);②[t,正无穷)

  奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。

  周期性:无

  解析式:

  ①y=ax^2bxc[一般式]

  ⑴a≠0

  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

  ⑶极值点:(-b/2a,(4ac-b^2)/4a);

  ⑷Δ=b^2-4ac,

  Δ>0,图象与x轴交于两点:

  ([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);

  Δ=0,图象与x轴交于一点:

  (-b/2a,0);

  Δ<0,图象与x轴无交点;

  ②y=a(x-h)^2k[顶点式]

  此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

  ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

  对称轴X=(X1X2)/2当a>0且X≧(X1X2)/2时,Y随X的增大而增大,当a>0且X≦(X1X2)/2时Y随X

  的增大而减小

  此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连

  用)。

  交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。

  26.2用函数观点看一元二次方程

  1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。

  2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  26.3实际问题与二次函数

  在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

数学二次函数知识点总结

  数学要点:二次函数图象和性质是二次函数的图象是对称轴平行于y  轴的抛物线。接下来为大家带来的是初中数学知识点总结之二次函数。

  提醒大家:上面的内容是二次函数知识点,请大家做好笔记了。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初中数学二次函数的知识点总结

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动单位,再向下移动单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=-x当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

小班语言教案

我最喜欢的一个汉字