7年级数学上册

互联网 2024-04-01 阅读

人教版数学上册模拟试卷

  丁家初中八年级(下)期末考试数学模拟题

  姓名________得分

  一、填空题(共10小题,每题3分,共30分)

  1.函数y=中变量x的取值范围是.

  2.一个氧分子是由两个氧原子组成的,氧原子半径约为0.074纳米,1纳米=10–9米,用科学记数法表示氧原子的半径约为:米.

  3.当时,方程=2–会产生增根.

  4.计算:(2–)0+(–)3––2的值是.

  5.一个菱形的两条对角线长分别为6c,这个菱形的边长为.

  6.某中学八年级2班学生为地震灾区举行了一次募捐活动,有37名同学捐了5元,2位同学捐了50元,还有一位同学捐了100元.你认为这40个同学捐款的平均数、中位数、众数,用哪一个来代表他们每人捐款的一般数额比较好呢?.

  7.数据:3,4,5的方差是.

  8.观察下列等式:.请根据规律写出下一个等式.

  9.如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为________.

  10.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=______.

  二、选择题(共10小题,每题4分,共40分)

  11.下列式子中,分式的个数为

  .

  A.3个B.4个C.5个D.6个

  12.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为

  A、2个B、3个C、4个D5个

  13.已知函数的图象经过点(2,3),下列说法正确的是

  A.y随x的增大而增大B.函数的图象只在第一象限

  C.当x<0时,必有y<0D.点(-2,-3)不在此函数的图象上

  14.计算的结果是

  A.B.C.D.

  15.反比例函数和一次函数,在同一直角指标系中的图象可能是

  ABCD

  16.菱形的面积为2,其对角线分别为x、y,则y与x的图象大致为

  A.B.C.D.

  17.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a的取值范围为

  A、4a16B、14a26C、12a20D、以上答案都不正确

  18以下列线段a、b、c的长为三边的三角形中,不能构成直角三角形的是

  A.a=9,b=41,c=40B.a=b=5,c=

  C.a∶b∶c=3∶4∶5D.a=11,b=12,c=15

  19.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为,.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有

  分数5060708090100人数甲组251013146乙组441621212

  A.2种B.3种C.4种D.5种

  20.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米,如果梯子顶端沿墙下滑4分米,那么梯足将滑动

  A.9分米B.15分米C.5分米D.8分米

  三、解答题(共80分)

  21.(5分)(1)先化简代数式:(-)÷,然后选取一个你喜欢,且使原式有意义的x的值代入求值.

  (5分)(2)解分式方程:

  得分

  21.(10分)先阅读下面的材料,然后解答问题。

  通过观察,发现方程

  的解为;

  的解为;

  的解为;

  …………………………

  (1)观察上述方程的解,猜想关于x的方程的解是________________;

  (2)根据上面的规律,猜想关于x的方程的解是___________________;

  (3)把关于x的方程变形为方程的形式是

  ,方程的解是

  .

  22.(10分)已知如图:矩形ABCD的边BC在X轴上,E为对角线BD的中点,点B、D的坐标分别为B(1,0),D(3,3),反比例函数y=的图象经过A点,

  (1)写出点A和点E的坐标;

  (2)求反比例函数的解析式;

  (3)判断点E是否在这个函数的图象上.

  23.(10分)一次函数的图像与反比例函数的图像交于点M(2,3)和另一点N.

  (1)求一次函数和反比例函数的解析式;

  (2)求点N的坐标;

  (3)求△MON的面积.

  24.(10分)已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.

  (1)求证:△ABE≌△ADF;

  (2)过点C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.

  25.(10分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:

  1号2号3号4号5号总分甲班1009811089103500乙班8610098119975001号2号3号4号5号总分甲班1009811089103500乙班8610098119975001号2号3号4号5号总分甲班1009811089103500乙班8610098119975001号2号3号4号5号总分甲班1009811089103500乙班861009811997500

  1号2号3号4号5号总分甲班1009811089103500乙班861009811997500

  (1)根据上表提供的数据填写下表:

  优秀率中位数方差甲班乙班

  (2)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述理由.

  26.(10分)四川省汶川大地震后,某食品加工厂要把600吨方便面包装后送往灾区.

  (1)写出包装所需的天数t天与包装速度y吨/天的函数关系式;

  (2)包装车间有包装工120名,每天最多包装60吨,预计最快需要几天才能包装完

  (3)包装车间连续工作7天后,为更快地帮助灾区群众,厂方决定在2天内把剩余的方便面全部包装完毕,问需要调来多少人支援才能完成任务

  27.(10分)(1)探究新知:

  如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.

  (2)结论应用:

  ①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.

  试证明:MN∥EF.

  28.(10分)如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).

  (1)设△DPQ的面积为S,求S与t之间的函数关系式;

  (2)当t为何值时,四边形PCDQ是平行四边形

  (3)分别求出出当t为何值时,①PD=PQ,②DQ=PQ

  附加题:已知反比例函数和一次函数,其中一次函数的图象经过(a,b)、(a+1,b+k)两点。

  ⑴求反比例函数的解析式;

  ⑵若两个函数图象在第一象限内的交点为A(1,请问:在x轴上是否存在点B,使△AOB为直角三角形?若存在,求出所有符合条件的点B的坐标;

  ⑶若直线交x轴于C,交y轴于D,点P为反比例函数的图象上一点,过P作y轴的平行线交直线CD于E,过P作x轴的平行线交直线CD于F,求证:DE·CF为定值。

  全品中考网

7年级数学上册

七年级上册数学有理数课件

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力。

  有理数减法法则。

  有理数的减法转化为加法时符号的改变。

  电脑、投影仪

  一、从学生原有认知结构提出问题

  1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

  2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

  3.填空:(1)____+6=20;      (2)20+____=17;(3)____+(-2)=-20;           (4)(-20)+___=-6.

  二、师生共同研究有理 数减法法则

  问题1  (1)4-(-3)=______ ;(2)4+(+3)=______.

  教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

  思考:减法可以转化成加法运算.但是,这是否具有一般性

  问题2  (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

  对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

  归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

  强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

  三、运用举例 变式练习

  例1  计算:(1)9 -(-5);  (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

  例2  世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米

  例3  P63例3

  例4  15℃比5℃高多少? 15℃比-5℃高多少

  练一练: P63. 1题  P64-65数学理解1、问题解决1、联系拓广1、2题.

  补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

  (5)0-6;  (6)6-0;    (7)0-(-6); (8)(-6)-0.

  2.计算:(1)16-47;    (2)28-(-74);   (3)(-37)-(-85);    (4)(-54)-14;

  (5)123-190;  (6)(-112)-98;  (7)(-131)-(-129);   (8)341-249.

  3.计算:(1)(3-10)-2;  (2)3-(10-2); (3)(2-7)-(3-9);

  4.当a=11,b=-5,c=-3时,求下列代数式的值:

  (1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

  四、反思小结

  1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。习题2.6知识技能1、3、4题。

  本节课内容较为简单,学生掌握良好,课上反应热烈。

人教版七年级上册角数学课件

  一、设计理念:

  在教学中,应注重使学生探索现实世界中有关图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单的图形,应注重通过观察物体、图案等活动,发展学生的空间观念。

  二、教材分析:

  本课是在以前学过的基础上进行新授的,并且本单元要学的图形都是在学生已经直观认识这些几何图形的基础上学习的,所以在教学时,应注重把握好旧知向新知的引渡,使学生能自然而然激发自己的学习兴趣。

  三、教学目标:

  1、使学生认识射线,知道直线、射线和线段之间的联系和区别。

  2、使学生认识角。

  四、教学流程:

  (一)、创设情境,激发兴趣。

  师:(出示动物百米赛跑图)你知道跑道是由什么图形组成的吗

  生:线段。

  师:你会画线段吗?(指名板演)用什么画的?为什么要用直尺画呀

  (此过程自然而然导入线段的特征,从而为后面要学的射线、直线作好准备)

  师:线段是直的,这是线段的什么呀?你还知道线段的哪些特征。

  生:有两个端点,无限长(可以量出长度)

  师:如果将线段的一端延长(或两端都延长)那会变成什么图形呢

  (二)、认识射线、直线。

  1、 自学课本第109页

  2、 比较线段、射线和直线,并从现实生活中举事例。

  师:它们各叫什么名字呀?它们又与线段有什么不同和相同的地方呢

  学生回答。

  师:你能应用这个知识解释生活中或自然界中的射线吗?看谁说的多。

  生:手电筒的光线。

  生:探照灯射出的线……

  五、教学结束:

  让学生能把现实生活中的东西和数学知识联系在一起,让学生能应用数学知识了解社会,并使学生知道数学来自社会,也能用于社会。

  教学反思:

  本节课是在学生认识角的基础上,进一步认识量角的单位和学习用量角器测量角的大小。其中读角的度数是一个难点,什么时候看内圈,什么时候看外圈是学生容易混淆的地方。教学中的数学概念多,如:中心点、零刻度线、内刻度线、外刻度线都是一些抽象的纯数学语言)知识盲点多,几乎没有旧知识作铺垫,操作程序复杂,尤其是对于动作不够协调的四年级学生来说,是一次关于手与脑的挑战。

  教学中,我为学生提供了动手、动脑、动口“做数学”的机会,从中培养学生的数学思维、自主学习的能力和问题意识。认识量角器这一环节,先让学生观察自己的量角器,在量角器上你发现了什么?新鲜的事物总是能吸引学生的注意,学生的观察是认真的,仔细的,汇报发现也很积极,我给予肯定和表扬,然后引导归纳小结。在这个环节中学生自主探究,从中体验了探索的乐趣。紧接着我提出问题:怎样用量角器去量一个角呢?激发学生往下学习的欲望。

  学生尝试量角,探求量角的方法。学生看到的只是一个静态的、完整的角,还没有认识到角是由一条射线绕端点旋转而成,量角时为什么量角器中间那个点对准角的顶点,零刻度线对准角的一边,另一边看刻度,对于角的旋转过程和方向没有建立表象加以认识,自然对读角的刻度时很茫然,弄不明白什么情况看外刻度线上的数或内刻度线上的数,尽管有的同学会量,也不知所措,说不出理由,因为学生的理解抽象思维远逊于对形象的记忆,教学中我注重引导学生去寻找量角的方法,中心对准角的顶点,就意味着量角器上有角的顶点,零线对准角的一条边,另一条边旋转到量角器的另一条刻度线上,说明你要量的角就是量角器上形成的这个角。教学时发现学生比较容易认错刻度,因为每条长刻度线上都有两个数,这是教学的一个难点。我组织学生小组讨论,有什么好方法来突破这个难点,之后请学生发言。有的说:“与量角器的零刻度线重合的这条边对着的 0 是在内圈的,另一条边就看内圈的数字,如果对着的 0 是在外圈的,另一条边就看外圈的数字。”还有的说:“我先判断画的角如果是锐角就认刻度线上的小数,如果是钝角就认刻度线上的大数。在这个时机引导总结出量角的方法:“中心对顶点,零线对一边,另一边认刻度,内外分清楚。”还真不能小看学生的力量,他们总结的方法很适合大家用。这样给学生留出思考和探究的时间和空间得出的结论,比教师一一讲授要好。

  此外,我的教学收获是:在上课时,我们会牵着学生的鼻子走,让学生朝自己设定的方向发展。但是通过观察我发现,其实学生有自己的思想,有自己的体验,在教学时要关注这些,选取合理的因素加以利用。给学生提供思考和解决问题的空间,调动学生的主动性和积极性,能培养学生的思维能力,让不同层次的学生取得不同的进步。

人教版数学上册知识点归纳总结

  第一章有理数

  1.有理数:

  (1)凡能写成形式的数,都是有理数,整数和分数统称有理数.

  注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数?0和正整数;a>0?a是正数;a<0?a是负数;

  a≥0?a是正数或0?a是非负数;a≤0?a是负数或0?a是非正数.

  2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.

  3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0?a+b=0?a、b互为相反数.

  (4)相反数的商为-1.

  (5)相反数的绝对值相等

  4.绝对值:

  (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;

  注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;

  (3);;

  (4)(4)a是重要的非负数,即a≥0,非负性。

  5.有理数比较大小:

  (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;

  (3)两个负数比较,绝对值大的反而小;

  (4)数轴上的两个数,右边的数总比左边的数大;

  (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  6.倒数:乘积为1的两个数互为倒数;

  注意:0没有倒数;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.

七年级上册数学工作总结

  转眼间半年时间已经过去,作为一名从教多年的老师,在教学工作中,也遇到了许多问题,本期自己所教班学生成绩不是很理想,我对我初一的数学教学做了如下的反思:

  一、对教学目标的反思

  教学目标是教学设计中的首要环节,是一节课的纲领,对纲领认识不清或制定错误必定注定打败仗,七年级上期数学教学反思。对于我来说我自认为有以下几点不足:

  1、对教学目标设计思想上不足够重视,目标设计流于形式。

  2、教学目标设计关注的仍然只是认知目标,对“情感目标”、“能力目标”有所忽视,重视的是知识的灌输、技巧的传递,严重忽视了教材的育人功能。

  3、教学目标的设计含混,不够全面、开放。

  教学目标的制定要符合学生的认知程序与认知水平。制定的教学目标过高或过低都不利于学生发展,要让学生跳一跳摘到桃子。“这么简单的题都做不出来”、“这道题都讲过几遍了还不会做”,碰到这样情况,我们不应埋怨学生,而要深刻反思出现这样状况到底是什么原因,是学生不接受这样的讲解方式,还是认识上有差异;是学生不感兴趣,还是老师引导不到位等等;作为老师千万不能埋怨责怪学生,不反思自己,只会适得其反,以致把简单的问题都变成学生的难点,因此教学设计要能激发学生学习数学的热情与兴趣,要教给学生需要的数学。以后的教学中辅导后进生应向其他老师学习。

  二、对教学计划的反思

  在教学设计中,对教学内容的处理安排还存在以下几点缺乏:

  (1)缺乏对教材内容转译;抓住知识本质特征,设计一些诱发性的练习能诱导学生积激学生的好奇心。

  (2)问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在“观察、实践、归纳、猜想和证明”的探究过程中,激发起他们对新知识的渴望。

  学生在学习中遇到的困惑,往往是一节课的难点,将解决学生困惑的方法在教学后记中记录下来,就会不断丰富自己的教学经验。

  (1)认清了问题,要解决问题并不是一朝一夕,一蹴而就的,我坚信只要我继续努力,更新观念,深刻反思自己的教学行为,教学规范,就一定能够有所发展,有所进步!

  (2)缺乏对已学知识的分析、综合、对比、归纳和整体系统化;

  (3)缺乏对教学内容的教育功能的挖掘和利用;

  (4)缺乏对自我上课的经验总结。

  三、征求学生意见

  潜心于提高自己教学水平的老师,往往向学生征询对自己教学的反馈意见,这是老师对其教学进行反思的一个重要的渠道。

  若在课堂上设计了良好的教学情境,则整节课学生的学习积极性始终很高。课后我总结出以下两点体会:

  (1)抓住知识本质特征,设计一些诱发性的练习能诱导学生积极思维,刺激学生的好奇心。

  (2)问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在“观察、实践、归纳、猜想和证明”的探究过程中,激发起他们对新知识的渴望。

  学生在学习中遇到的困惑,往往是一节课的难点,将解决学生困惑的方法在教学后记中记录下来,就会不断丰富自己的教学经验。

  四、对教学误区的反思

  以前我以为老师讲得清,学生就听得懂。现在才知道如果老师讲课只顾自己津津有味,不顾来自于学生的反馈,老师与学生的的思维不能同步,学生只是被动地接受,毫无思考理解的余地,这样不是听不懂,便是囫囵吞枣。在课堂的业余时间段内让学生通过主动探索后发现知识,领悟所学。同时要及时反馈学生,加强效果回授,对未听清之处给学生以二次补授之机会,及时扫清障碍,将学习上的隐患消灭在萌芽状态。

  我常常埋怨学生,“这么简单的题都做不出来”!孰不知,老师与学生的知识水平与接受能力往往存在很大反差,就学生而言,接受新知识需要一个过程,绝不能用老师的水平衡量学生的能力。因此,在教学时,必须全面理解学生的基础与能力,低起点、多层次、高要求地施教,让学生一步一个脚印,扎扎实实学好基础知识,在学知识中提高能力。

  虽然我已经认清了问题,但是要解决问题不是一朝一夕,一蹴而就的,我坚信只要我继续努力,更新观念,深刻反思自己的教学行为,教学规范,就一定能够有所发展,有所进步!

七年级上册数学知识点的总结

  第一章 有理数

  (一)正负数

  1.正数:大于0的数。

  2.负数:小于0的数。

  3.0即不是正数也不是负数。

  4.正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2.整数:正整数、0、负整数,统称整数。

  3.分数:正分数、负分数。

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5. ab = a +(b) 减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab= ba

  4.乘法结合律:(ab)c = a (b c)

  5.乘法分配律:a(b +c)= a b+ ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  (七)乘方

  1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

  2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  第二章 整式

  (一)整式

  1.整式:单项式和多项式的统称叫整式。

  2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3.系数:一个单项式中,数字因数叫做这个单项式的系数。

  4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式:几个单项式的和叫做多项式。

  6.项:组成多项式的每个单项式叫做多项式的项。

  7.常数项:不含字母的项叫做常数项。

  8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

  9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  (二)整式加减

  整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  第三章 一元一次方程

  分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  (一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

  (二)一元一次方程:

  1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

  2.解:求出的方程中未知数的值叫做方程的解。

  (二)等式的性质

  1.等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a= b,那么a± c= b± c

  2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  如果a= b,那么a c= b c;

  如果a= b,(c0),那么a ∕c = b ∕ c。

  (三)解方程的步骤

  解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

  1.去分母:把系数化成整数。

  2.去括号

  3.移项:把等式一边的某项变号后移到另一边。

  4.合并同类项

  5.系数化为1

  第四章 图形认识初步

  一、图形认识初步

  1.几何图形:把从实物中抽象出来的各种图形的统称。

  2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

  3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

  4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  5.点,线,面,体

  ①图形是由点,线,面构成的。

  ②线与线相交得点,面与面相交得线。

  ③点动成线,线动成面,面动成体。

  二、直线、线段、射线

  1.线段:线段有两个端点。

  2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  3.直线:将线段的两端无限延长就形成了直线。直线没有端点。

  4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。

  5.相交:两条直线有一个公共点时,称这两条直线相交。

  6.两条直线相交有一个公共点,这个公共点叫交点。

  7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

  8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)

  9.距离:连接两点间的线段的长度,叫做这两点的距离。

  三、角

  1.角:有公共端点的两条射线组成的图形叫做角。

  2.角的度量单位:度、分、秒。

  3.角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

  4.角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

  ③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  ④工具:量角器、三角尺、经纬仪。

  5.余角和补角

  ①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。

  ②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。

  ③补角的性质:等角的补角相等

  ④余角的性质:等角的余角相等

七年级数学上册期末试卷

  一、选择题(每小题3分,共30分):

  1.下列变形正确的是( )

  A.若x2=y2,则x=y B.若 ,则x=y

  C.若x(x-2)=5(2-x),则x= -5 D.若x=y,则x=y

  2.截止到2010年5月19日,已有21600名中外记者成为上海世博会的注册记者,将21600用科学计数法表示为( )

  A.0.216×105 B.21.6×103 C.2.16×103 D.2.16×104

  3.下列计算正确的是( )

  A.3a-2a=1 B.x2y-2xy2= -xy2

  C.3a2+5a2=8a4 D.3ax-2xa=ax

  4.有理数a、b在数轴上表示如图3所示,下列结论错误的是( )

  A.b

  C. D.

  5.已知关于x的方程4x-3的解是x=则值是( )

  A.2 B.-2 C.2或7 D.-2或7

  6.下列说法正确的是( )

  A. 的系数是-2 B.32ab3的次数是6次

  C. 是多项式 D.x2+x-1的常数项为1

  7.用四舍五入把0.06097精确到千分位的近似值的有效数字是( )

  A.0,6,0 B.0,6,1,0 C.6,0,9 D.6,1

  8.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,这所列方程为( )

  A.13x=12(x+10)+60 B.12(x+10)=13x+60

  C. D.

  9.如图,点C、O、B在同一条直线上,∠AOB=90°,

  ∠AOE=∠DOB,则下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°. 其中正确的个数是( )

  A.1 B.2 C.3 D.4

  10.如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB= ∠MFE. 则∠MFB=( )

  A.30° B.36° C.45° D.72°

  二、填空题(每小题3分,共18分):

  11.x的2倍与3的差可表示为 .

  12.如果代数式x+2y的值是3,则代数式2x+4y+5的值是 .

  13.买一支钢笔需要a元,买一本笔记本需要b元,那么买钢笔和n本笔记本需要 元.

  14.如果5a2b是同类项,则 .

  15.900-46027/= ,1800-42035/29”= .

  16.如果一个角与它的余角之比为1∶2,则这个角是 度,这个角与它的补角之比是 .

  三、解答题(共8小题,72分):

  17.(共10分)计算:

  (1)-0.52+ ;

  (2) .

  18.(共10分)解方程:

  (1)3(20-y)=6y-4(y-11);

  (2) .

  19.(6分)如图,求下图阴影部分的面积.

  20.(7分)已知, A=3x2+3y2-5xy,B=2xy-3y2+4x2,求:

  (1)2A-B;(2)当x=3,y= 时,2A-B的值.

  21.(7分)如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=

  14°,求∠AOB的度数.

  22.(10分)如下图是用棋子摆成的“T”字图案.

  从图案中可以看出,第1个“T”字型图案需要5枚棋子,第2个“T”字型图案需要8枚棋子,第3个“T”字型图案需要11枚棋子.

  (1)照此规律,摆成第8个图案需要几枚棋子

  (2)摆成第n个图案需要几枚棋子

  (3)摆成第2010个图案需要几枚棋子

  23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米

  根据下面思路,请完成此题的解答过程:

  解:设星期三中午小明从家骑自行车准时到达学校门口所用时间t小时,则星期一中午小明从家骑自行车到学校门口所用时间为 小时,星期二中午小明从家骑自行车到学校门口所用时间为 小时,由题意列方程得:

  24.(12分)如图,射线OM上有三点A、B、C,满足OA=20c,BC=10c如图所示),点P从点O出发,沿OM方向以1c秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.

  (1)当PA=2PB时,点Q运动到的

  位置恰好是线段AB的三等分

  点,求点Q的运动速度;

  (2)若点Q运动速度为3c秒,经过多长时间P、Q两点相距70c(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 的值.

  参考答案:

  一、选择题:BDDCA,CDBCB.

  二、填空题:

  11.2x-3; 12.11 13.a

  14.3 15.43033/,137024/31” 16.300.

  三、解答题:

  17.(1)-6.5; (2) .

  18.(1)y=3.2; (2)x=-1.

  19. .

  20.(1)2x2+9y2-12xy; (2)31.

  21.280.

  22.(1)26枚;

  (2)因为第[1]个图案有5枚棋子,第[2]个图案有(5+3×1)枚棋子,第[3]个图案有(5+3×2)枚棋子,一次规律可得第[n]个图案有[5+3×(n-1)=3n+2]枚棋子;

  (3)3×2010+2=6032(枚).

  23. ; ;由题意列方程得: ,解得:t=0.4,

  所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(k,

  即:星期三中午小明从家骑自行车准时到达学校门口的速度为:

  4.5÷0.4=11.25(k).

  24.(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得:

  PA=40,OP=60,故点P运动时间为60秒.

  若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:

  50÷60= (c);

  若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:

  30÷60= (c).

  ②当P在线段延长线上时,由PA=2PB及AB=60,可求得:

  PA=120,OP=140,故点P运动时间为140秒.

  若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:

  50÷140= (c);

  若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:

  30÷140= (c).

  (2)设运动时间为t秒,则:

  ①在P、Q相遇前有:90-(t+3t)=70,解得t=5秒;

  ②在P、Q相遇后:当点Q运动到O点是停止运动时,点Q最多运动了30秒,而点P继续40秒时,P、Q相距70c所以t=70秒,

  ∴经过5秒或70秒时,P、Q相距70c

  (3)设OP=xc点P在线段AB上,20≦x≦80,OB-AP=80-(x-20)=100-x,EF=OF-OE=(OA+ )-OE=(20+30)- ,

  ∴ (OB-AP).

七年级上册数学学期的总结

  要搞好初中数学教学,取得良好的教学效果,必须认真研究初中教学的各种规律,并加以有机综合,形成适应自身教学的有效方法,下面把本学期的教学工作总结如下:

  一、业务学习

  加强学习,提高思想认识,树立新的理念。坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。另外,抽时间学习《给教师的建议》、《教育的理想与信念》、成功教育、教师人文读本等,并作学习笔记,以丰富自己的头脑,提高业务水平。

  二、教学方面

  教学工作是学校各项工作的中心,一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:

  1、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。

  2、注重课堂教学效果。针对初一年级学生特点,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。注意和学生一起探索各种题型,我发现学生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习劲头就上来了,如每节课后如有时间,我都出几题有新意,又不难的相关题型,与学生一起研究。

  3、要进行一定数量的练习,相当数量的练习是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,在练习时注重学生数学思维的形成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。

  4、考前复习中要认真研究与整理出考试要考的知识点,重难点,要重点复习的题目类型,难度,深度。这样复习时才有的放矢,复习中什么要多抓多练,什么可暂时忽略,这一点很重要,会直接影响复习效果与成绩。另外还要抓好后进生工作,后进生会影响全班成绩与平均分,所以要花力气使大部分有希望的后进生跟得上。例如在课堂上,多到他们身边站一站,多问一句:会不会,懂不懂,课后,对他们的不足及时帮助,使他们感受到老师的关心,从而能够主动学习。

  5、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,学习他人的先进教学方法。

  6、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

  三、工作中存在的问题

  1、教材挖掘不深入。

  2、教法不够灵活,不能总是吸引学生学习,对学生的引导、启发不足。

  3、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导。

  4、后进生的辅导不够,由于对学生的基础知识掌握情况了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中也知道,有的学生只是做表面文章,“出工不出力”。

  5、教学反思不够。

  四、今后努力的方向

  1、加强学习,学习新课标下新的教学思想。

  2、学习新课标,挖掘教材,进一步把握知识点和考点。

  3、多听课,学习同科目教师先进的教学方法和教学理念。

  4、加强转差培优力度。

七年级数学上册的工作总结

  在学校教科研室的带领下,七年级数学组的老师们积极实践新的教学模式,严格按照“目标导学、质疑探究、当堂反馈”的教学步骤组织教学,当然,在新的教学模式实施的过程中,我们也碰到了许多困难,我们采用了实践——反思——共同探讨——再实践——再反思的方式,想办法让自己的教学更加符合学生的知识水平和认知水平,提高自己的教育教学能力。现将本学期的教学工作总结如下:

  一、对学生的分析

  七年级是学生从小学到初中的转变阶段,除了学生心理的变化外,学习方法也将产生巨大的变化,从小学的3门主要课程,到中学的7门主要课程;从小学以练为主的学习方法,到中学以学生自我探究为主的学习方法;从小学听老师的话,到初中有自己的想法,对自己学习情况的掌握等等这些变化,教师要帮助学生完成这些转变,在老师的指导和要求下,找到适合自己的学习方式。七年级学生精力旺盛,对任何事物充满了好奇,针对学生的特点,教师应该重点培养学生的逻辑思维能力,语言表达能力,符号语言能力和空间想象能力。同时,教师应该注意引导学生形成课前预习、课后复习、课堂上积极思维、主动回答老师的问题、积极思考的学习方法。所以,在教学中应更加关注学生提出问题的能力的培养,应该更加关注学生分析理解问题的方法的培养,以人为本,以发展学生的数学能力为长期目标,为学生的终身发展考虑。

  二、教育教学总结

  1、起始年级,形成习惯。

  良好的学习习惯是学生不断提高和进步的有利保障,也是教师提高课堂效率的前提和基础。所以,七年级的第一个学期,在课堂中教会学生各种“规矩”就非常重要,其中包括课前准备时,将课堂练习本打开;上课读书时,用笔指读;读书结束后,积极质疑;课堂练习时,书写工整、规范;当堂训练时,象考试一样紧张等等,这些习惯的养成需要老师有明确的要求,还需要老师的反复强调和提醒。

  2、三清工作,查漏补缺。

  堂堂清、日日清和周周清是我们的“三清”工作,在还没能熟练运用新的教学模式之前,三清工作的开展让我能更加了解学生对课堂教学的掌握情况,也让我能及时发现课堂中没有解决好的问题,帮助学生和老师查漏补缺,及时订正学生学习的盲点,不断改进教师的教学。

  3、课堂教学,提高效率。有三清工作做基础,学生在课堂上学得更加紧张,教师在课堂教学中也会想方设法发现更多学生学习上的漏洞,在后来的探究和总结阶段尽量多的解决学生知识上存在的问题,从而促进三清工作的工作量少一些。所以,高效课堂的实现必须有学生良好的学习习惯;有老师对学生学习情况充分的了解;有教师课堂探究的有效作用;有教师总结提升的方法和思想的提炼等等,总之,高效课堂是学生和教师的完美配合,是一个可以解决不同层次学生学习问题的课堂。

  4、课后反馈,有针对性。

  课堂教学的最后一个环节是当堂反馈,开始时,我总是掌握不好课堂进度,让过多的讲解占用了学生课堂反馈的时间,学生对自己本节课知识的掌握情况估计不准确,教师没有对学生进行堂堂清的依据,课堂效率仍然无法提高。后来,通过对教学模式的进一步熟练掌握,把握好质疑探究阶段时间和效率,即使是5分钟,也要开展当堂反馈,这种反馈有很强的针对性,也为教师课下与学生面对面的辅导提供了有效的依据。

  5、引入竞争,激发兴趣。

  徒弟与徒弟间的竞争,师傅与师傅间的竞争,课堂上回答问题的竞争,课堂反馈速度的竞争,课堂测试对错的竞争,黑板上板演题目的格式、书写、正确性的竞争,对同学们错误纠正情况的竞争,以及学生自己对自己的评价,同学们之间的评价,师徒间的评价,教师对学生的评价,这些竞争的引入可以“比”出学生学习的积极性和主动性,也“比”出了班级中浓厚的学习氛围。

  6、不断反思,寻求方法。

  当然在教学过程中,我遇到了各种各样的问题,例如:学生不会读书;学生为了加快书写速度,致使书写字迹潦草;多次遇到困难的学生,缺乏自信等等问题,对待这些问题我是从每节课的反思中不断总结自己课堂的不足的,从同教研组老师们身上学习方法,运用到自己的教学实践中,不断纠正自己错误的教学行为,让自己的教学更加适合自己的课堂。

  总之,本学年的教学工作是在不断的探究和实践中摸索前进的,虽然有困惑,虽然有不熟悉,但新的教学模式的优点越来越多的显现在我的面前,我想,我不会放弃探索,不断完善自己的课堂教学将成为我以后教学工作的主要目标。

七年级数学

  根据课程改革的要求,初中数学教学中通过课题学习,学生将经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的应用价值,发展自己数学思维能力,获得一些研究问题、解决问题的经验和方法,从而培养学生探究数学学习的兴趣,体验学习的成功。

  在八年级的数学(上)中的《整式的乘除》中,我们遇到了《平方差与完全平方公式》的教学任务。根据过往学生的认识过程来看,学生的定向思维就认为(a+b)2=a2+b2,而且还是根深蒂固的,那么如何在教学中转变或是加深学生对此公式的正确认识呢?在课前,我想了很多方法,也参考一些兄弟学校的做法,我尝试用两种教学方法做个试验,看学生的接受情况如何。

  方法一:数形结合——面积与代数恒等式的学习

  从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的试验中发现、归纳公式。本课中,本想让学生课前先做好纸片,然后再堂上小组合作,探究公式。但是按学生的学习习惯来看,这课前的要求怕难落实,因而我改用了课件,用学生看屏幕观察和小组合作完成学卷的方式完成教学。

  教学环节:(学生观察、小组合作归纳)问题1:首先请你仔细观察下图,你能用下面的图解释两数和乘以它们的差公式吗

  问题2:请你组员一起合作,仿照问题1的方法,

  表示(a+b)2与(a-b)2的几何图形。

  就这两个问题,学生用了一节课完成。中间的学生活动,老师还是讲的比较多,因此答案也比较一律了,当然这与学生的学习能力有关。不过,学生总算明白两公式的几何意义了,这也算是本节课最大的收获了。但学生对公式的理解还是“半熟”。

  方法二:数值验算——利用数值计算归纳公式

  此方法可以说比较老套,但是对学生来说,可能容易接受。我的设计是这样的:

  请把五组数的值分别输入下图的两个数值转换机,比较两个输出结果,你发现什么?这说明了什么

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

公司股权转让

工程管理毕业论文