数学二考研大纲2023
考研大纲出台后数学的复习计划
20xx 年考研数学一大纲与 20xx 年相比没有任何变化,但大纲下来了,考生的心也就定下来了。下个阶段的复习也紧接着就开始了,在时间如梭中,奥运就这么来了,考生的时间就这么一点一滴流逝了,七月流火中,专家老师提醒大家,从现在开始的考研数学复习这样进行:总结前一阶段,看书巩固提升基础知识,做题提高技巧,好好锻炼身体。
数学一大纲没有变化,考数学一的同学不用再担心考试内容与考试范围了,按照自己已有的复习计划继续进行。但大家不要忽视了大纲,对大纲的理解问题可参考《 20xx 数学考试大纲导读》。
强化阶段已经有很长一段时间了,听了别的同学的复习进度,有的考生可能就有点紧张了,教材还没看完,做题还是没感觉等等,有的考生简直就想放弃了。我告诉你,同学,每个人的情况不一样,你的进程没有按计划,那你就要适当的调整计划;还有你的计划不要不切实际,而要按照自己的实情做安排,最好计划是分级的,初级计划做的容易实现一些,后面的一步步提高,这样当第一步完成后你的自信就会有所上升,从而更有信心完成下一步的计划;最后,要坚持信念,无论怎么样也不要轻言放弃。如果强化班已经结束,那么老师提醒大家,及时整理一下课上的笔记,整理的过程也就是一个回顾,同时一些不明白的问题也再次思考、与同学讨论、查资料弄明白它。这样能为以后留下较清楚的复习资料,不论以后查找还是再次阅读都会比较方便。
八月虽然重点是强化训练,但大家也不要忘记了对基础知识的随时翻晒。强化中遇到的题目综合性较强,基础知识隐含于其中,在不明白不清楚的时候一定要随时查阅教材或基础性的书籍,如《高等数学》、《高等数学过关与提高》、《线性代数》、《线性代数过关与提高》、《概率论与数理统计》、《概率论与数理统计过关与提高》等。这些基础性的书籍必须是案头必备,考研复习过程中一直都可以用到。看一个考生复习的效果如何,只要看看他有没有把这些基础性的图书翻得破边了。
进行强化的同时必须做题,考研复习的最高境界就是能做题一挥而就。做题的水平高下在于平时的锻炼,针对于考研来说,专项训练的最好的方式,客观题与主观题有不同的应对策略,所以有必要分别练习。还有检测复习效果最好的还有历年真题,而最有参考价值的真题是近六年的,即就是 20xx 年之后的,因为这六年来的真题与 20xx 年真题的分值、结构差不多。当然之前的真题的内容也是有一定的参考意义的,因为数学基本理论是没有变的,考研所集中的知识点也没有太大变化。还有就是模拟试卷,模拟题不需要做太难的,那是自杀,选择难度适中的,为模拟考场做做演习。
锻炼身体,这是考研中最重要的一项工程。身体好,头脑才能清楚,学习效率才能更高,一小时就有一小时的效果。信心、韧性也都会随身体状况的好转而增加,每天坚持锻炼身体,全民强身,这是奥运口号,也是考研的需要,事业的需要!
考研数学大纲解析:高等数学的学习方法
根据考研大纲,我们可以看到高等数学是数一、数二、数三中地位最高的,比重最大的科目,在数一、数三中占56%,在数二中竟占了百分之78%,因此科目上的重头戏在高数。下面我们将基于考研大纲帮助考生找到高等数学高效的学习方法:
1.高数中比较难的有微分中值定理和定积分的证明题,这一部分题目技巧性比较强,难度比较大。
2.数一的曲线积分和曲面积分在考试中得分率不高,而数二和数三在多元函数微积分里的要求虽然比数一低很多,但得分率也不高。导致这个现象出现的根本原因大多数考生对这一部分重视程度不够,从而对这一部分的内容生疏。
3.不按照常理出牌。如傅里叶级数,以往出现的频率很低,大概四五年才会出一道小题,但是在08年数一里,考了一道傅里叶级数的大题,11分,这是任何人都事先都没有想到的。又比如说数一在考查多元函数积分学时,它的大题大多数时候都是出在第二类曲线积分或是第二类曲面积分上的,因为这里有一些很重要的公式和定理,题目比较好出。但2010年,数一考的却是一道第一类曲面积分的题目;2011年也只考了一道二重积分的题目,这在以往的考研中都是很少见的,但是看这道题的要求又是在大纲范围之内的,不能说它超纲。
通过以上的分析,我们要知道考试大纲只是指明了考试的范围,告诉了我们考试的具体内容以及每一部分内容的要求,并没有规定每一部分内容应该占多大的比例。
基于此,建议广大考生在复习的时候尽可能地全面,不要因为某一个知识点在考试中出现得比较少就不重视。也不要去相信什么押题,数学考的是基本功,不是靠一两套模拟试卷就能抓得起来的。
考研数学大纲解析:极限与导数
一、极限
极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。其中,极限的计算是核心考点,考题所占比重最大,因此,熟练掌握求解极限的方法是得高分的关键。
极限计算的常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等。
四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,是基础阶段的学习重点,考生应该已经非常熟悉。之后针对一些较为复杂的极限计算,运用泰勒公式会达到简化计算的效果,熟记一些常见的麦克劳林公式也往往可以事半功倍。此外,夹逼定理、定积分定义常常用来计算某些和式的极限,单调有界收敛定理多用来证明数列极限存在,以及求递归数列的极限。
二、导数
求导与求微分每年直接考查的知识所占分值平均在10分到13分左右。常考题型:(1)利用定义计算导数或讨论函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。
对于导数与微分,首先考生对于它们的定义要给予足够的重视,其在分段函数中的应用是特别重要的。其次,应该熟练掌握可导、可微与连续性的关系。在求导计算中常用的方法有四则运算法则和复合函数求导法则。关于复合函数求导法则是需要大家灵活掌握的,幂指函数求导法、隐函数求导法、参数式求导法、反函数求导法及变限积分求导法等都是复合函数求导法的应用。
最后,对于极限和导数部分的备考,希望考生能够通过多做题、多练习,一方面把解题的思路和方法技巧集中总结起来,另一方面提高熟练度,达到熟能生巧的效果。
考研数学三大纲
考试科目:微积分、线性代数、概率论与数理统计
考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟
二、答题方式
答题方式为闭卷、笔试
三、试卷内容结构
微积分约56%
线性代数约22%
概率论与数理统计约22%
四、试卷题型结构
单项选择题选题8小题,每小题4分,共32分
填空题6小题,每小题4分,共24分
解答题(包括证明题)9小题,共94分
微积分
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立
数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限
函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
考试要求
1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系
2、了解函数的有界性、单调性、周期性和奇偶性
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念
4、掌握基本初等函数的性质及其图形,了解初等函数的概念
5、了解数列极限和函数极限(包括左极限与右极限)的概念
6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法
7、理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系
8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型
9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质
二、一元函数微分学
考试内容
导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值
考试要求
1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程
2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数
3、了解高阶导数的概念,会求简单函数的高阶导数
4、了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分
5、理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用
6、会用洛必达法则求极限
7、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用
8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线
9、会描述简单函数的图形
三、一元函数积分学
考试内容
原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Ne-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用
考试要求
1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法
2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法
3、会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题
4、了解反常积分的概念,会计算反常积分
四、多元函数微积分学
考试内容
多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分
考试要求
1、了解多元函数的概念,了解二元函数的几何意义
2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质
3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数
4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题
5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算
五、无穷级数
考试内容
常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式
考试要求
1、了解级数的收敛与发散、收敛级数的和的概念
2、了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法
3、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法
4、会求幂级数的收敛半径、收敛区间及收敛域
5、了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数
6、了解,及的麦克劳林(Maclaurin)展开式
六、常微分方程与差分方程
考试内容
常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用
考试要求
1、了解微分方程及其阶、解、通解、初始条件和特解等概念
2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法
3、会解二阶常系数齐次线性微分方程
4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程
5、了解差分与差分方程及其通解与特解等概念
6、了解一阶常系数线性差分方程的求解方法
7、会用微分方程求解简单的经济应用问题
线性代数
一、行列式
考试内容
行列式的概念和基本性质行列式按行(列)展开定理
考试要求
1、了解行列式的概念,掌握行列式的性质
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式
二、矩阵
考试内容
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵
4、了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法
5、了解分块矩阵的概念,掌握分块矩阵的运算法则
三、向量
考试内容
向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法
考试要求
1、了解向量的概念,掌握向量的加法和数乘运算法则
2、理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法
3、理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩
4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
5、了解内积的概念.掌握线性无关向量组正交规范化的施密特(Sch)方法
四、线性方程组
考试内容
线性方程组的克拉默(Cra)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解
考试要求
1、会用克拉默法则解线性方程组
2、掌握非齐次线性方程组有解和无解的判定方法
3、理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法
4、理解非齐次线性方程组解的结构及通解的概念
5、掌握用初等行变换求解线性方程组的方法
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法
2、理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法
六、二次型
考试内容
二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
考试要求
1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念
2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形
3、理解正定二次型、正定矩阵的概念,并掌握其判别法
概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验
考试要求
1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等
3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法
二、随机变量及其分布
考试内容
随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布
考试要求
1、理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用
3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布
4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用
5、会求随机变量函数的分布
三、多维随机变量的分布
考试内容
多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布。
考试要求
1、理解多维随机变量的分布函数的概念和基本性质
2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布
3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系
4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义
5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质
考试要求
1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2、会求随机变量函数的数学期望
3、了解切比雪夫不等式
五、大数定律和中心极限定理
考试内容
切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理
考试要求
1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)
2、了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.
六、数理统计的基本概念
考试内容
总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布
考试要求
1、了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念
2、了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表
3、掌握正态总体的样本均值、样本方差、样本矩的抽样分布
4、了解经验分布函数的概念和性质
七、参数估计
考试内容
点估计的概念估计量和估计值矩估计法最大似然估计法
考试要求
1、了解参数的点估计、估计量与估计值的概念
2、掌握矩估计法(一阶矩、二阶矩)和最大似然估计法
考研数学大纲解析及备考方略
第一点,梳理知识点
考生要结合手上已有的参考书,总结知识框架与典型例题,将各大知识要点梳理一遍。把自己比较薄弱的地方标记出来,后续这部分内容一定要多看。梳理知识点这个过程建议大家用一周的时间完成高数,线代概率两科用一周时间。数二的同学,也用两周时间,具体怎么梳理,自己可以适当的分配时间。梳理完知识点,就是做题了,这里不建议大家买太多本习题集,一本即可,但一定要把这一本书里的题,做精做会。在这里建议大家准备一个错题本,把做错的题记下来,以后反复的多做几次。当然,新东方在线的学员遇到疑问可以到知识堂进行答疑,及时解决问题。
第二点,真题一定要反复练习
进入9月中下旬,大家就要开始做近十年真题了,11月底之前,必须按题型反复做2-3遍。这个过程会很辛苦,但是等到你上考场拿到试卷的那一刻,你会感谢自己当初的努力。因为数学考试大纲非常稳定,考试难点、重点每年都差不多,所以真题的价值就特别特别高,大家一定要重。
第三点,回归课本
做过几遍真题之后,大家就会发现,题目做的越多,教材翻得越多,到了备考瓶颈期,有时候连最基本的定理也会变的模糊,这是需要回归课本的信号。进入12月份,大家就不要再做新题了,一定要及时回归课本,以"本"为本,完全理清知识结构。然后,两天一套真题,集中三个小时的时间,数学是上午考,建议大家选上午的时间练习。拿一张白纸,就跟考试一样,在草稿纸上打草稿,在答题纸上写标准的解题步骤,按照考试的模式和规律做套题,完全模拟考场上的情形与状态。每做完一套真题之后,一定要总结有哪些问题,在下一次模拟中尽可能避免。这个环节是很重要,大家一定要好好练。
考研数学大纲解析
1、今年大纲知识点无论数学一、数学二还是数学三都没有变化。这样的话从知识本身来说同学们可以按照原计划进行。我在前面一段时间跟大家说的是希望你们一定要稳定扎实按原计划进行。今天这个意思大家应该比较明确了。
数学大家知道历来是整个考研所有学科当中最为稳定的一门,因为这个叫经典学科,经典学科的知识经过多年考察已经达到了非常稳定的命题结构、知识,不会有巨大的变化。尤其在考前一百多天时间里。
2、我们今天看到了教育部公布的2016年考研数学平均分,大家认真听一下,第二条非常重要,数学1平均分60.65分,数学2平均分60.56分,数学3平均分63.49,150分的满分,这三个分难度系数0.4,教育部怎么说的?教育部说难度系数控制在0.5到0.55之间。大家算,它考出来平均分是0.4,规定的是0.5到0.55,差10恩%到15%.这个是严重偏离了预计的平均分。我想从去年考研到现在,大半年时间我一直跟大家讲北京考区平均分非常低,现在大家看到全国公布的数据,这个数据只有60分的平均分。
看来这一点确确实实是需要调整的。这一点大家可以比较有一个,对2017考生来讲是比较好的消息,如果这一年难度确实太难,这是全国大样本数据,如果这样的话,今年难度有调整,这是一定会做的。
但是我看了所有的数据,大家知道数学1都出现了0.08的难度系数,什么意思?十分的题平均分0.8分,十个人连一个人做对的都没有。这种难度系数都有。数1、数2、数3里大题出现不到0.1的难度系数,还有很多是0.2的难度系数。相当多的题目出现这个问题。
首先第一点大家知道去年考试的考生在这个问题上是遇到了很大的困难。但是说另外一点。今年公布的数据里,有一句话我念给你们听,你们有一个分析。虽然2016年很难,但是题目的区分度非常好。除了有一个题区分度在0.2以下,其他题目都在0.2以上。
虽然大家不太理解区分度0.2是什么概念,我一直说区分度到0.4、0.5,0.2在教育部考试中心看来是好的了。
2017年虽然难了,我想看到它的信息是承认难了,但是官方在承认困难的同时加了一句话,虽然把题出难了,但是我们出的卷子还是蛮好的,因为区分度高,有利于高等学校招生把人区分开。
今年肯定难度要调整,我一直说2017是一个好机会,不会太难。2017的考生在接下来的时间,稳步的复习。