数学做题的方法及技巧

互联网 2024-04-01 阅读

数学学习方法指导讲解

  要多练习,知道自己的不足,对大家的学习有所帮助,以下是查字典数学网为大家总结的高一数学学习方法,希望大家喜欢!

  一、高中学生的心理特征与数学学习对策

  1、高中数学课程的特点

  高中一年级要学集合、逻辑、函数、数列、三角与平面向量。这些内容中理论成分所占的比重与初中数学相比空前增加。无论是概念的抽象性,论证的逻辑性,方法的灵活性,还是应用广泛性与初中数学相比,对思维水平的要求可以说是爬上了一个陡坡。高二、高三年级要学不等式的系统理论、解析几何、立体几何、排列组合、概率统计、极限、导数与复数这些内容与高一数学相比,理论成分更多,方法论成分增加的力度更大。基于这一特点,学习高中数学首先要全面、系统、深刻地掌握好数学理论的来龙去脉,同时又要分析好、理解好每个数学知识点的丰富内涵,吃透它的思想实质,有了这样一个踏实的理念基础,解题时就有可能做到用理论思维,即用所学过的数学理论与方法去观察,去分析,去解决面临的问题,这是学好高中数学的根本方法,作为教师,就应该认真去研究怎样教学生吃透理论,怎样教学生用理论思维,并且引导学生不断地总结这方面的经验,否则必然会陷入盲目性,去搞什么题型教学,甚至会滑到题海教学的边沿,这将会给学生带来严重的后果。高中三年是人体各器管剧烈发展、变化的三年,心理特征的发展变化也是如此。

  2、高一年级学生的心理特征与学习对策

  心理学家的研究告诉我们:高中一年级是个转折点:同学们的抽象思维慢慢开始从经验型占主导向理论型占主导转变,并且将迅速进入理论型发展的关键期,这时同学们遇事开始有了个人的见解,自主意识和独立解决问题的能力显著增强,感觉自己真正长大了。

  这时,一个值得大家十分关注的问题是:教育研究表明,在关键期如果所学的知识具有一定的挑战性(挑战就是激励),并且教育与训练的方式得当,思维水平就会得到神奇般地发展!反之,如果教育内容乏味,措施无力或不当,就会贻误甚至摧残发展,给学生留下终生的遗憾。长期的教学实践和系统的学法教育的研究,还使我们获得了一个非常重要的发现:一个高中生三年的发展,不论是知识的获得,个性的陶冶,还是能力的提高,都遵循这个规律三年发展看高一,高一关键在一(上)这就是说,在高中一年级上学期所形成的心理态势、学习方式、思维习惯和知识结构将会对高中三年的发展产生重大的甚至是决定性的影响,高一(上)结束时所产生的优秀生、中等生和后进生有相当大的比例将一直持续到高中毕业甚至大学以后,这一发现进一步加强了高一年级特别是高一上学期应该是关键期中的关键期这一认识。反面的教训更应引起我们警觉:有相当多的中学生,正是由于高中一年级没有实现好这个转折,数学学习方法与习惯一直不能与高中数学的学习相适应,成绩一现下滑,最后甚至失去了学好数学的信心,给本人和家长带来了沉重的精神压力和痛苦!这是大学都不愿看到的。一个严肃的重大课题摆到了我们的面前:抓好这个关键期的教育和训练实在是太重要了!可是到底应该怎样抓呢

  (1)要正视转折点,引导学生自觉地实现转轨

  要向学生讲清高中数学的特点,激励他们要与时俱进,认真地学习、领悟数学学习的科学理念与以理论型抽象思维水平主导的数学学习方法,自觉地、尽快地按照数学学习的基本结构高质量地完成从初中学习到高中学习的转轨,形成良好的数学学习习惯与方法。

  (2)要珍惜宝贵的关键期,力争思维水平有一个更好的发展。

  关键期也是发展的最佳期,俗话说一寸光阴一寸金,抓好关键期,使自己的才能达到更好的发展,会终生受益无穷,否则时过而后学,虽勤劳而难成《学记》,这是因为人的各种器官和能力的发展都具有明显的阶段性。具体地说,高一年级的数学内容中理论成分所占比重较大,这就为理论型抽象思维水平的发展提供了契机,教育学生应当在每一次的理论(定义、定理、公式、法则)教学的全过程(试验猜测论证分析例题应用)中,在老师的指导下主动、积极地参与数学活动,力争做到四个超前,力争独立解决问题,以促进自己的抽象思维能力的发展。

  3、高二年级学生的心理特征与学习对策

  心理学家的研究告诉我们:高二年级同学的抽象思维水平已经进入理论型发展的成熟期,在这个阶段如果教育和训练得法、适当,思维水平还能得到很大的发展,思维能力将会进一步完善。但是,这个时期一般只有一两年时间,过了这个成熟期,理论型抽象思维能力的发展将会减缓,并且会逐渐趋于稳定(也就是说越往后,发展的余地就会越小),取而代之的将是辨证逻辑思维能力的发展。千方百计地抓好成熟期这一段极其宝贵的黄金时期,力争获得数学能力的大发展应该是高二数学教学的出发点和落脚点。

  (1)首先要做好学生的思想动员,要把成熟期只有一、两年的规律告诉学生,以激起他们发展思维水平的危机感,学生动起来事情就好办了。

  (2)高二数学的理论性与方法论性质较高一数学进一步提高,这就为数学能力的大发展提供了充足的精神食粮,作为教师,既是深入研究、开发每章、每节、每个例习题的智力功能,又要研究、关注每个同学的思维特点,精心设计、精心操作,帮助学生在学好数学的同时,努力促进思维水平的发展

  (3)学法指导的重点仍然是:

  1、怎样提高对数学理论的理解水平

  2、怎样提高用理论思维的意识和水平,抓好了这两条就抓住了学好数学、用好数学的根本。

  二、数学学习的科学理念

  一条好的创业理念能挽救一个工厂,发展一个企业,振兴一个民族,这已是屡见不鲜的事实!同样,一条好的学习理念,能使一个学习屡屡爱挫的同学从此走向学习的成功,走上人生的康庄大道,这里向读者推荐的就是这样一条科学的数学学习理念,要讲清这个问题,首先需要弄清下面的问题:什么是真正的意义上的数学学习?它的本质与核心是什么

  从所周知,数学中的知识点不是孤立的,而是紧密联系的,人们把相互联系在一起的若干个数学知识点称为数学知识结构。数学学习就是学习者在自己的头脑中不断建构(建立和造构)和完善数学知识结构的过程,心理学家把这个过程叫做数学知识的内化,内化的结果,若通逐步形成一个条理清晰的、内涵丰富的、联系紧密的、体验深刻的知识结构,学习就是成功的,反之,学习就不成功,甚至是失败的,反思这个内化的过程可以得出以下两点结论:

  学习数学的过程从本质上讲就是理解数学知识及其联系的过程,理解得透彻、深刻、全面,内化的质量就高,可见,理解是数学学习的核心,当代美籍数学大师陈省身说过,数学就是理解!他之所以这样讲是基于数学具有三大特点高度的抽象性,严密的逻辑性,应用的极端广泛性和灵活性。如果离开了深入的理解,要想学懂数学、学好数学是根本不可能的,因此理解对数学学习具有极端的重要性,真正意义上的数学学习一定要把理解放在第一位,千方百计地去提高理解层次,科学的数学学习方式必然是建立在深化理解基础上的学习方式,舍此就背离了真正意义上的数学学习,是断然不可能学数学的。

  第一,理解是学习者自身建构,这种理解是不可能靠别人给予的,而只可能是学习者通过参与数学活动亲身感悟出来的心得体会,美国《新数学丛书》的序言中写道:学数学最好的方法是做数学,讲的就是这个道理,为了讲清原理,使感悟能达到操作水平,分四个环节:

  (1)参与问题

  参与数学活动,这是获得数学理解的前提,参与又可分为主动参与和被动参与两种形态,有些同学课堂上是以听为主,力争跟上老师的思路,他虽然也有参与,但这种参与所涉及的内容和力度都是很有限的,另有一些同学,课堂上不满足于听懂,而是像数学家那样,力争自己解决问题,这种强烈的自主意识调动了他全部的身心投入到数学创造中去,这种参与内容到力度上与上一种参与相比有质的区别,他所获得的体验自然要丰富得多,深刻得多

  (2)反思问题

  荷兰籍国际数学教育大师弗赖登特尔认为,反思是数学活动的核心和动力,没有反思,学生的理解就不可能从一个水平升华到更高的水平,可见他把反思看得很重,很重!那么,什么是反思呢?通俗地讲就是回头看脚印就是对数学活动的全过程以及新旧知识间的联系进行反复深入的思考,从中去发现数学的真缔,因此,要想学好数学就一定要学会反思,一定要养成反思的习惯,这是学好数学的根本。

  (3)概括问题

  把参与与反思过程中所获得的感性认识悟化到理性认识的过程,从中发现规律,洞察本质,提高理解数学的水平。

  研究表明,这个过程对学习数学、理解数学具有特殊的重要性,而这又恰恰是同学们十分困难的地方,因此,学会概括就显得更加必要。

  (4)迁移问题

  所谓迁移就是学习者把所获得的体验、方法、思想、观念运用到新的情境中去,这本身就是一种创造。

  综上所述,要想获得高水平的理解,一定要紧紧地抓好参与-反思-概括-迁移这四个步骤,要主动参与,加强反思,学会概括,力求迁移,这可看作是学习数学的微观过程,很明显,在这个过程中,缺少任何一个环节的学习都是不完全的学习,不完全的学习是不可能获得高水平的理解的。

  三、数学学习的科学方法

  基于上述学习数学的科学理念,笔者向读者推荐我们在北京四中所倡导的数学学习方法,这可看作是学习数学的宏观过程。

  1、课堂上力争做到四个超前

  (1)、超前想:老师提出课题后,自己要尽量超在老师讲解之前,想出思路和答案

  (2)、超前做:老师写出例题后,自己要尽量超在老师讲解之前,发现思路,甚至做出结果

  (3)、超前总结:老师做完解答后,自己要尽量超在老师讲解之前,对解答过程进行反思、概括和总结。

  (4)、超前提问题:老师作出总结后,自己要尽量超在老师讲解之前,发现问题,提出问题,研究问题

  四个超前首先是针对理论课的教学提出的,也适用于例题课的教学,基基本思想是课堂上要使自己的思维处于非常积极的状态,主动地对信息进行多方位的搜集、分析、综合与转换,从这个过程中获得新的猜想、新的思路、新的感悟、新的创造。四个超前的提出和实施为数学课堂注入了活力,彻底结束了学生被动听讲的局面,强化了独立思考和自主解决问题的意识,实践证明,这种意识对实现学生数学能力的大发展和创新精神的培养都具有非常重要的作用,而且,做到了四个超前,就有可能同老师的讲解和同学们的讨论、交流进行对比,找出差距,学习就更有针对性。

  2、课下要学会三种复习

  及时复习每天课后,要通过阅读课本和整理笔记完成两项任务:

  (1)深抠理论(概念、定理、公式、法则)

  数学概念和定理具有数学的三大特性,不深抠是难以理解和掌握的,深抠主要要弄清以下四个方面的问题:

  1、理论产生的背景和过程(为什么要提出这个概念?定理是怎样发现的?怎样证明的?公式是怎样推导的?)

  2、理论适用的条件(什么条件下这个理论不能用?)

  3、理论的结构特征(数与式子的结构特征,图形的结构特征,命题的结构特征等)

  4、理论的本质与功能(要透过形式看本质并且关注功能)

  (2)学抠例题

  我们把例题的学习划分为三种水平:怎么做(学会做法),怎么想(学会想的方法,核心是学会用理论思维)为什么要这样想,还能怎么想(真正做到明理),要知道,会做不等于会想,会想未必明理,只有会想,而且达到了明理的水平,才算知其然更知其所以然,才能举一反三,触类旁通。

  很明显,深抠的过程,就是华罗庚教授所倡导的把书读厚的过程,就是深入提示理论和例题丰富内涵的过程,就是充分汲取智力营养的过程,这个过程对学习数学而言,是不可缺少的基础性工程,是提高理解水平极为得要的步骤,更是废止题海战术的必要条件和法宝。

  3、单元复习每个单元读完之后,要做到单元复习,完成以下任务:

  (1)整理、串联知识点,形成单元的理论系统。

  知识点经串联以后,理论发展的来龙去脉一目了然,其主干和枝杈经纬分明,容易看清基本数学思想的指导作用,它能使你站在系统的高度总揽全局,甚至能把握理念发展的去向

  (2)归纳单元理论的基本思想,中心课题和数学方法,使理解达到更高的层面。

  (3)筛先单元中的典型例题和习题,以利于进一步研究和以后的复习

  很明显,这种系统整理知识的方法就是华罗庚教授所倡导的把书读薄的方法,这种方法能把零散的知识穿成串,结成链,形成系统,对进一步思考和理解单元知识的内涵以及提高能力作用极大,而且理论一经形成了系统,不但萌生了系统的整体功能,而且因其具有逻辑性和形象性,能长期保留记忆中

  讲到这里,也许有同学会问,课后复习和单元复习下这么大功夫有必要吗

  我们的回答是十分肯定的,原因是简单的,在高中阶段理性思考(用数学的理论作指导去思考)在数学的学习和解决问题的过程中起决定作用,因此,首先下功夫钻研理论,吃透精神,把劲使在刀刃上,这样做提高了理论的理解层次,解决问题时思维才会有正确的方向,否则思考必然会陷入无源之水的境地,这是高中阶段许多同学数学没有学好的根本原因。

  4、考前复习与考后总结

  很多同学考前不复习数学,只会找一份题做做。这样往往会使知识系统记忆不全,丢三落四,甚至平时做过的题考试中也想不起来,因此,学会考前复习具有现实意义,考前复习的任务在考试范围内:

  (1)把单元的理论系统及其内涵合上书从头到尾说一遍,说不下去时,找开书看一看,继续往下说,直至能全部说清楚,这是诺贝尔物理学奖获得者华裔科学家丁肇中教授的学习方法,用这种方法复习,能做到不缺不漏,重点突出,能真正了解自己掌握理论的状况,这种说教学的方法很有效,值得提倡,你不妨试一试!

  (2)把单元复习整理过的中心课题、数学思想和方法照上而的办法也说一遍,这样做不但能完整地掌握数学问题解决的课题、思想方法,而且重点突出,针对性强,省时省力。

  (3)把典型例题和习题分析一遍或者做一遍。

  考试后要做总结。既要总结成功的经验,更要总结失分点。失分点分为四类:1、理论的失误2、技能操作的失误3、理解思路和方法的失误4、心理因素引起的失误

  要查明原因,找出改进的方法,力争做到对失分点日后为二错。华罗庚教授倡导,学数学要反复温习,以上所讲的是落实反复温习的操作方法。

  5、作业要做到三项要求

  (1)先复习后做作业(全面掌握教材,才能领悟每个练习题的目的,做作业才能省时、省力、质优、高效)

  要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。

  (2)做作业要精力集中,字迹清秀,操作规范,计算正确,力求不涂改(精力集中,做事一板一眼,是一种优秀的心理素质,对成才大有裨益,有些同学平时不注意养成,等出现问题时,再来校正就非常困难)

  我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

  (3)出现错题,要要重做,并要查明原因

  要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。总结:高一数学学习方法就为大家分享到这里了,同学们只要努力学习,积极动手,勤于动脑,多总结,善发现,一定会取得较好的成绩。

数学做题的方法及技巧

高中数学学习方法总结

  1,心态要放平和点,不要老觉得自己数学差学不好什么的,心理作用很重要的,所以要有自己能学好的信心,相信自己的能力

  2,数学最重要的就是理论+实践,理论就是上课一定认真听,把每个知识点记住并弄懂,定义什么的分清楚,然后实践就是课后多做题,这也是最重要的,只有通过不断地多做题,才能熟能生巧,加深映像,并能增强理解能力

  3,课后的习题都比较简单,是根据课本知识点相应来编写的,所以那点题是不够的,最好是hi自己买一本同步的资料,题目答案对应的那种,先自己做,再对答案改错。

  4,不懂得要多问老师同学,不要怕丑,这也没什么丑的,相信他们也一定会耐心乐意为你解答的

2009中考数学阅读理解题的解题技巧

  中考数学的阅读理解题能较好地考查学生阅读理解能力与日常生活体验,同时又能考查学生获取信息后的抽象概括能力、建模能力,决策判断能力,因而一直是近年来乃至今后全国各地中考命题的热点。这类题贴近实际,可以引导学生关心社会,对促进中学数学教学改革,强化学生的数学应用意识,优化学生的思维品质,提高学生的数学思维能力,培养学生的个性品质具有重要意义。

  南通市2000年至2003年的中考试卷中都设计了阅读理解题,这些考题情景新颖且都是同学们应该了解和掌握的基本知识和基本技能,分别约占总分的7%、7%、12%和18%,且呈明显的上升趋势,而且今后此类题型的考查力度会进一步加大。因此,我们在全面复习的基础上,要突出重点,善于对解题规律进行归纳总结,不断提高自己的解题能力。除了在提高学生基本知识上下功夫外,也应重视阅读理解题的解题技巧。

  下面我们先通过两例考题的失误分析,谈谈一般阅读理解题的解题技巧。

  例1(南通市2007年中考试卷第29题):某果品公司急需将一批不易存放的水果从A市运到B市销售。现有三家运输公司可供选择,这三家公司提供的信息如下:

  解答下列问题:

  (1)若乙、丙公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);

  (2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸及费用、运输费用及损耗三项之和)最小,应选择哪家公司

  分析:本题主要考查函数的应用以及分析问题和解决问题的能力,本题的得分率为0.38。

  主要错误有:

  (1)没有完全理解表中各元素之间的关系就开始解题,

  (2)第2问中的距离S用第1问的结果代替,

  失误的原因:看图识表的能力及对情境的理解较差,对问题的探究能力较弱。

  例2某市出租车的起步价是7元(起步价是指不超过3k程的出租车价格)。超过3k程后,其中3k行程按起步价计费,超过部分按每公理1.6元计费,如果仅去时乘出租车而回程时不乘坐,那么顾客还需付回程的空驶费,按每公理0.8元计算(即实际按每公理2.4元计费)。例如:小文从市中心A处乘出租车去相距5k镇,如果他仅去时乘出租车(回程另行考虑),则应付出租车的车资为:7+(5-3)×2.4=11.8(元);如果他往返都乘同一辆出租车,则实际行程为10k应付车资为:7+(5×2-3)×1.6=18.2(元)。

  现设小文等4人从市中心A处到相距Xk<X<10)的C地,有两种方案:

  方案一:去时4人乘同一辆出租车,返回都乘公交车(公交车车资为每人2元);

  方案二:4人乘同一辆出租车往返。

  请回答下列问题:

  (1)分别写出方案一的车资Y1(元)与X(k的函数关系式,以及方案二的车资Y2(元)与X(k的函数关系式。

  (2)在这两种方案中,哪种方案更经济

  分析:本题(1)主要考查学生利用函数知识分析、解决实际问题的能力,(2)考查学生运用分类思想讨论问题的能力,本题得分率为0.42。

  主要错误有:1、不理解出租车的收费办法,认为4人乘同一辆出租车的车资应为车资×人数;2、没有理解"空驶费、起步价"等专业术语的意义,生活经验少。

  失误的原因:对新概念、术语的理解能力较差,缺乏联系生活经验的意识,对问题的探究能力较弱。

2009中考数学阅读理解题的解题技巧

  初中数学阅读理解题大致可分四类:纯文型(全部用文字展示条件和问题)、图文型(用文字和图形结合展示条件和问题)、表文型(用文字和表格结合展示条件和问题)、改错型(条件、问题、解题过程都已展示,但解题过程可能要改正)。无论哪种类型,其解题步骤一般都可分为以下几步:

  一、快速阅读,把握大意

  在阅读时不仅要特别留心短文中的事件情景、具体数据、关键语句等细节,还要注意问题的提出方式。据此估计是我们平常练习时的哪种类型,会涉及到哪些知识,一般是如何解决的,在头脑中建立初步印象。

  二、仔细阅读,提炼信息

  在阅读过程中不仅要注意各个关键数据,还要注意各数据的内在联系、标明单位,特别是一些特殊条件(如附加公式),以简明的方式列出各量的关系,提炼信息,读"薄"题目,同时还要能回到原题中去。

  三、总结信息,建立数模

  根据前面提炼的信息分析,通过文中关键词、句的提示作用,选用恰当的数学模型,例如由"大于、超过、不足……"等联想到建立不等式,由"恰好……,等于……"联想到建立方程,由"求哪种方案更经济……"联想到运用分类讨论方法解决问题,由"求出……和……的函数关系式或求最大值(最小值)"联想到建立函数关系,将题中的各种已知量用数学符号准确地反映出其内在联系。

  四、解决数模,回顾检查

  在建立好数学模型后,不要急于解决问题,而应回过头来重新审题,一是看看哪些数据、关系还没有用上,用得是否准确,要充分挖掘题中的条件并发挥它

  们的作用;二是关键词句的理解是否准确、到位;三是判断所列关系式是否符合生活经验;四是在解题过程中要善于反思,发现问题及时纠正。

  在解题中需注意的几个问题:

  1、克服缺乏仔细审题意识,避免因片面审题,快速答题带来的失误。

  2、克服受思维定势的影响,用"想当然"代替现实的偏面意识。

  3、忽略题中的关键词语、条件,对题意的理解有偏差。

  4、善于回顾反思,及时发现问题纠正错误,克服侥幸意识带来不必要的失误。

  5、平时要重视阅读、理解和表述能力的培养,加强数学语言的理解和应用,数学语言包括文字语言、符号语言、图形语言、数表,它是数学思维和数学交流的工具,所以要仔细梳理问题的脉络结构,培养良好的思维习惯。

数学解题六步骤

  在求解应用题时,从问题出发,想到公式,找出解决这个问题所必备的条件。对公式中提出的条件,要想到题目中的已知条件,从已知条件中找到或求出来。即:看清问号想公式,公式定下找条件,条件都在题目里,草稿简图显关系,计算过程要细心,切记验算不能忘。

  如:小明计划读故事书720页,已经读了5天,平均每天读60页,其余的6天读完,平均每天要读多少页

  一看问号?要我们求什么?必须看清楚。要求出平均每天读多少页

  二想公式。平均每天读多少页=余下的页数÷读的天数,因此必须知道余下的页数和读的天数(6天)这两个条件。

  三找条件。从题目中找公式中的除数和被除数,想方法解出他们。要求出余下多少页,就要知道计划读多少页(720页)和已经读了多少页,要求出已经读了多少页,需要知道已经读的天数(5天)和平均每天读的页数(60页)。

  四画简图。在草稿纸上把题目中的已知条件的数量关系用线段长短表示出来。

  五列算式。根据二、三、四步,把有关的数字列入公式,计算出来,已经读了多少页:60×5=300(页)。余下多少页:720-300=420(页)。平均每天读多少页=余下的页数÷读的天数:420÷6=70(页)。就得到题目中的问号啦!

  六记验算。所有的结果都必须进行验算,还应用不同的方法进行验算。

  以上六步骤是按解一般应用题的思路进行分析的。任何一个问题都可以找到相应的公式来表示他们之间的数量关系,这是解应用题的核心。数学是无处不在的,让我们热爱数学,学好数学吧!

数学学习方法如何攻克三种题目的解法

  数学试题分为选择题、填空题和解答题三种题型,选择题、填空题是基础,共76分,解答题是提高分数的关键,攻克这三种题目的解法,特别是选择题的解法,它解法灵活多样,如:直接法、代入法、特值法、排除法、数形结合法等。掌握多种这些解题方法,会使解答试题速度快而准确,同时为解答最后六道解答题赢得了更多的时间。

  (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

  (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

  (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

  (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

  (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

  (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

  (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

  (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

  高二数学学习方法之六个概念方法

  一、温故法

  学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

  二、操作法

  对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。

  三、类比法

  这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

  四、喻理法

  为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.

  五、置疑法

  这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。

  六、创境法

  如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。

  高二数学学习方法之积累考试经验

  本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

  数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

  高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度,其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。

  做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

  复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

  数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。

  那么如何抓基础呢

  1、看课本;

  2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。

  3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化

  与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

  4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。

  观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。

  死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。

  5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。

考研数学解题方法技巧分类总结

  考研数学打好基础固然重要,但知识点公式背下来,不会解题也是不行的,数学题型灵活,大家一定不要背答案,而是掌握各类不同题型的解题思路和要点方位正解。下面就和大家详细谈谈。

  立足基础,融会贯通

  解答题作答的基本功还是在于对基本概念、基本定理和性质以及基本解题方法的深入理解和熟练掌握。因此首先做好的有两个层面的复习:

  第一,把基本概念、定理、性质彻底吃透,将重要常用的公式、结论转变为自己的东西,做到不靠死记硬背也可得心应手灵活运用,这是微观方面;

  第二,从宏观上讲,理清知识脉络,深入把握知识点之间的内在关联,在脑海中形成条理清晰的知识结构,明确纵、横双方向上的联系,方可做到融会贯通,对综合性考查的题目尤为受用。

  分类总结解题方法与技巧

  主观题分为三大类:计算题、证明题、应用题。

  三类题型分别有各自独特的命题特点以及相应的做题技巧。例如计算题要求对各种计算(如未定式极限、重积分等)常用的定理、法则、变换等烂熟于心,同时注意各种计算方法的综合运用;而证明题(如中值定理、不等式证明等)则须对题目信息保持高度敏感,熟练建立题设条件、结论与所学定理、性质之间的链接,从条件和结论双向寻求证明思路;应用题着重考查利用所学知识分析、解决问题的能力,对考生运用知识的综合性、灵活性要求很高。

  同学们在复习的过程中要注意针对三种不同的题型分别总结解题方法与技巧,及时归纳做题时发掘的小窍门、好方法,不断提高解题的熟练度、技巧性。在做题的过程中,保持与考纲规定的范围、要求一直是首要原则,可以选一本根据最新考试大纲编写的主观题专项训练题集,对三大类解答题进行针对性的训练与深入剖析,在做题的过程中提炼解题要领、解决各类题型的关键环节与作答技巧,做到触类旁通,活学活用,获取知识掌握与解题能力的同步提高。

  抓好两个基本点

  这里的两个基本点指的是对每一位同学解题备战至关重要的两大要素——核心题型及易错题型。核心题型包括近年考试常考的题目类型,如高等数学中的洛必达法则、复合函数求导、二重积分计算,线性代数中的特征值、特征向量、矩阵对角化,概率统计中的随机变量密度函数、独立性、数字特征等问题,都需要同学们熟练掌握题目解法,落实到底。另外很重要的一点就是对自己掌握不太好的题型、经常做错或者感觉无从下手的题型也要多花时间彻底搞懂,弄通,并且通过更多的同类题目的练习加深巩固,直到对此类题目及与此相关的题目都能够轻松破解,变难题为拿手题,长此以往解题能力必可获得显著提高。

数学解题技巧

  有些同学问我:曹双双,你数学怎么做得这么快啊,而且正确率也挺高的,有什么技巧吗。

  记得在一二年级的时候,其实我做数学作业挺慢的,为此我老爸整天有种恨铁不成钢的感觉。但慢慢慢慢地速度越来越快了,而且质量也提高了,嘿嘿,我还真有自己的小窍门……其实说穿了也没什么,无非是两点,第一、多练习;第二、多思考,多想想这道题还有没有别的更简单、更快捷的方法可以解答。先说说第一点:多练习。熟话说“勤能补拙、贵在坚持”,这方法是最简单也是最有效的。多练习不仅可以温故而知新,还可以锻炼速度。你可以人为的给自己设置“门槛”,从一开始的五分钟一题慢慢到十分钟三题再……逐渐缩短每道题占用的时间,长期坚持下来,速度就自然而然提高了,你觉得呢?再说说第二点吧:多思考。每做完一道有一定挑战性的题目,事后一定要注意总结思考,看看能否探索出一种更简单、更快捷的方法来解答,这样坚持不懈地做下去,考试的时候你就能比别的同学节省大量的时间用来复查试卷,提高得分率。俗话说:条条大路通罗马,你还别说,这方法挺好的,呵呵,成功的路不止一条啊。这是我老爸特意教给我的,美其名曰“举一隅而反三隅”。

  刚开始的时候,我并不在意这种方法,还是象勤劳的小蜜蜂、孺子牛一样,吭哧吭哧地用着一力降十会的方法挥霍着大把的时间解题。俺老爸注意到后你猜他是怎么做的?他老人家从大处着眼,小处着手和我玩起了“算24点”,于是小小的扑克牌、汽车牌照…一切带数字的东东都成了我们的道具,一种解法、两种解法……

  从此乐此不疲啊,唉,还是俺老爸的技术含量高啊!佩服,佩服!回过头来再想想,其实真正说起来,数学并不难,难的是,你对她是接受还是排斥,一旦产生了兴趣一切都迎刃而解,而且所有的学科都是如此,同学们,你说对吗

高中数学答题技巧

  审题是解题的第一步,如果在第一步出现错误,那么你一定会失分.我发现同学们在解答概率题时由于审题不够细心,导致类型定位不准、情况出现重复或者遗漏等错误比较普遍.今特选几道有代表性的例子予以分析,望大家引以为戒.

  一、主观臆断导致错误

  例1从装有36粒药丸的瓶中,随意倒出若干粒(至少一粒),则倒出奇数粒的概率与倒出偶数粒的概率的大小关系为.

  (A)倒出奇数粒的概率大

  (B)倒数奇数粒的概率小

  (C)二者相等

  (D)不能确定

  错解:因为倒出的是奇数粒还是偶数粒机会相等,即倒出奇数粒的概率与倒出偶数粒的概率都为 .故选(C).

  剖析:这是一个等可能概率类型,因为任何一粒药丸都有倒出与不倒出两种可能,所以总的基本事件个数为 ,其中倒出的为奇数粒的事件数为 ,倒出偶数粒的事件数为 .所以应选(A).本题如果允许倒出0粒,选(C)就是正确的了,都是“至少一粒”惹的祸!

  二、混淆类型导致错误

  例2某家庭电话,打进的电话响第一声时被接的概率为 ,响第二声时被接的概率为 ,响第三声时被接的概率为 ,响第四声时被接的概率为 ,则电话在响前四声内被接的概率为.

  (A) (B) (C) (D)

  错解:记打进的电话响第一声时被接为事件A,打进的电话响第二声时被接为事件B,打进的电话响第三声时被接为事件C,打进的电话响第四声时被接为事件D.则电话在响前四声内被接的概率

  .故选(C).

  剖析:以上求解过程中错误地将A、B、C、D四个事件的关系理解为相互依赖的条件概率,而实际它们之间是彼此互斥的所以电话在响前四声内被接的概率 .故选(B).

  三、遗漏情况导致错误

  例3某种产品有2只次品和3只正品,每只产品均不相同,需要进行科学测试才能区分出来,今每次取出一只测试.通过三次测试,2只次品被检测出来的概率为多少

  错解:这是一个等可能的概率类型.记“所取的三件产品恰有两件次品”为事件A.完成事件A共有 种不同方法.而从5件产品中任取3件共有 种不同取法.所以所求事件概率为 .

  剖析:以上解法中忽略了对适合要求的事件B:“所取出的三件产品均为正品”的考虑,即出现了漏解现象.因此所求事件的概率为 .

  四、重复计算导致错误

  例4从5 名男生和2名女生中选3人参加演讲比赛.求所选3人中至少有一名女生的概率.

  错解:该题是一道等可能事件的概率类型.所有的基本事件个数为,其中适合要求的事件个数分两步求积:①从2名女生中先选1人,有 种不同方法;②再从余下的6名学生中任选2人,有 种不同方法.故所求概率为 .

高中数学解题的技巧

  为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

  一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

  基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

  一、 熟悉化策略

  所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

  一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

  常用的途径有:

  (一)、充分联想回忆基本知识和题型:

  按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

  (二)、全方位、多角度分析题意:

  对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

  (三)恰当构造辅助元素:

  数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

  数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

  二、简单化策略

  所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

  简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

  因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

  解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

  1、寻求中间环节,挖掘隐含条件:

  在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

  因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

  2、分类考察讨论:

  在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

  3、简单化已知条件:

  有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

  4、恰当分解结论:

  有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

  三、直观化策略:

  所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

  (一)、图表直观:

  有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

  对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

  (二)、图形直观:

  有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

  (三)、图象直观:

  不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

  四、特殊化策略

  所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

  五、一般化策略

  所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

  六、整体化策略

  所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

  七、间接化策略

  所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

高中数学思维训练方法

税收热点问题论文选题