数学思维十种思维方式

互联网 2024-04-01 阅读

数学思想

  数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思想方法”。常见的数学四大思想为:函数与方程、转化与化归、分类讨论、数形结合。

  目录

  函数与方程

  等价转化

  分类讨论

  数形结合

  如何寻找数学的思想方法

  函数与方程

  函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与数学思想方法

  不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。

  等价转化

  等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行数学思想领悟

  必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

  分类讨论

  在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。如a的定义分a0、a=0、a0三种情况。这种分类讨论题型可以称为概念型。②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax2时分a0、a=0和a0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

  数形结合

  中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。数学思想在人类文明中的作用1、数学与自然科学:在天文学领域里,在第谷·布拉埃观察的基础上,开普勒提出了天体运动三定律:(a)行星在椭圆轨道上绕太阳运动,太阳在此椭圆的一个焦点上。(b)从太阳到行星的向径在相等的时间内扫过的面积是F(如图)。(c)行星绕太阳公转的周期的平方与椭圆轨道C的半长轴的立方成正比。开普勒是世界上第一个用数学公式描述天体运动的人,他使天文学从古希腊的静态几何学转化为动力学。这一定律出色地证明了毕达哥拉斯主义核心的数学原理。的确是,现象的数学结构提供了理解现象的钥匙。爱因斯坦的相对论是物理学中,乃至整个宇宙的一次伟大革命。其核心内容是时空观的改变。牛顿力学的时空观认为时间与空间不相干。爱因斯坦的时空观却认为时间和空间是相互联系的。促使爱因斯坦做出这一伟大贡献的仍是数学的思维方式。爱因斯坦的空间概念是相对论诞生50年前德国数学家里曼为他准备好的概念。在生物学中,数学使生物学从经验科学上升为理论科学,由定性科学转变为定量科学。它们的结合与相互促进已经产生并将继续产生许多奇妙的结果。生物学的问题促成了数学的一大分支——生物数学的诞生与发展,到今天生物数学已经成为一门完整的学科。它对生物学的新应用有以下三个方面:生命科学、生理学、脑科学。2、数学与社会科学如果说在自然科学中,更多的是运用数学的计算公式及计算能力;那么在社会科学的领域中,就更能体现出数学思想的作用。要借助数学的思想,首先,必须发明一些基本公理,然后通过严密的数学推导证明,从这些公理中得出人类行为的定理。而公理又是如何产生的呢?借助经验和思考。而在社会学的领域中,公理自身应该有足够的证据说明他们合乎人性,这样人们才会接受。说到社会科学,就不免提一下数学在政治领域中的作用。休谟1曾说:“政治可以转化为一门科学”。而在政治学公理中,洛克的社会契约论具有非常重要的意义,它不仅仅是文艺复兴时期的代表,也推动了整个社会的进步。西方的资产阶级的文明比起封建社会的文明是进步了许多,但它必将被社会主义、共产主义文明所取代。共产党人提出的“解放全人类”——为人民谋幸福、“为人民服务”和“三个代表”应当也必将成为政府的基本公理。在政治中不能不提的便是民主,而民主最为直接的表现形式就是选举。而数学在选票分配问题上发挥着重要作用。选票分配首先就是要公平,而如何才能做到公平呢?1952年数学家阿罗证明了一个令人吃惊的定理——阿罗不可能定理,即不可能找到一个公平合理的选举系统。这就是说,只有相对合理,没有绝对合理。原来世上本无“公平”!阿罗不可能定理是数学应用于社会科学的一个里程碑。在经济学中,数学的广泛而深入的应用是当前经济学最为深刻的变革之一。现代经济学的发展对其自身的逻辑和严密性提出了更高的要求,这就使得经济学与数学的结合成为必然。首先,严密的数学方法可以保证经济学中推理的可靠性,提高讨论问题的效率。其次,具有客观性与严密性的数学方法可以抵制经济学研究中先入为主的偏见。第三,经济学中的数据分析需要数学工具,数学方法可以解决经济生活中的定量分析。在人口学、伦理学、哲学等其他社会科学中也渗透着数学思想……

  如何寻找数学的思想方法

  数学认识的一般性与特殊性

  数学作为对客观事物的一种认识,与其他科学认识一样,其认识的发生和发展过程遵循实践——认识——再实践的认识路线。但是,数学对象(量)的特殊性和抽象性,又产生与其他科学不同的、特有的认识方法和理论形式。由此产生数学认识论的特有问题。

  数学认识的一般性认识论是研究认识的本质以及认识发生、发展一般规律的学说,它涉及认识的来源、感性认识与理性认识的关系、认识的真理性等问题。数学作为对客观事物的一种认识,其认识论也同样需要探讨这些问题;其认识过程,与其他科学认识一样,也必然遵循实践——认识——再实践这一辩证唯物论的认识路线。事实上,数学史上的许多新学科都是在解决现实问题的实践中产生的。最古老的算术和几何学产生于日常生活、生产中的计数和测量,这已是不争的历史事实。数学家应用已有的数学知识在解决生产和科学技术提出的新的数学问题的过程中,通过试探或试验,发现或创造出解决新问题的具体方法,归纳或概括出新的公式、概念和原理;当新的数学问题积累到一定程度后,便形成数学研究的新问题(对象)类或新领域,产生解决这类新问题的一般方法、公式、概念、原理和思想,形成一套经验知识。这样,有了新的问题类及其解决问题的新概念、新方法等经验知识后,就标志着一门新的数学分支学科的产生,例如,17世纪的微积分。由此可见,数学知识是通过实践而获得的,表现为一种经验知识的积累。这时的数学经验知识是零散的感性认识,概念尚不精确,有时甚至导致推理上的矛盾。因此,它需要经过去伪存真、去粗取精的加工制作,以便上升为有条理的、系统的理论知识。数学知识由经验知识形态上升为理论形态后,数学家又把它应用于实践,解决实践中的问题,在应用中检验理论自身的真理性,并且加以完善和发展。同时,社会实践的发展,又会提出新的数学问题,迫使数学家创造新的方法和思想,产生新的数学经验知识,即新的数学分支学科。由此可见,数学作为一种认识,与其他科学认识一样,遵循着感性具体——理性抽象——理性具体的辩证认识过程。这就是数学认识的一般性。

  数学认识的特殊性科学的区分在于研究对象的特殊性。数学研究对象的特殊性就在于,它是研究事物的量的规定性,而不研究事物的质的规定性;而“量”是抽象地存在于事物之中的,是看不见的,只能用思维来把握,而思维有其自身的逻辑规律。所以数学对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在数学知识由经验形态上升为理论形态的特有的认识方法——公理法或演绎法,以及由此产生的特有的理论形态——公理系统和形式系统。因此,它不能像自然科学那样仅仅使用观察、归纳和实验的方法,还必须应用演绎法。同时,作为对数学经验知识概括的公理系统,是否正确地反映经验知识呢?数学家解决这个问题与自然科学家不尽相同。特别是,他们不是被动地等待实践的裁决,而是主动地应用形式化方法研究公理系统应该满足的性质:无矛盾性、完全性和公理的独立性。为此,数学家进一步把公理系统抽象为形式系统。因此,演绎法是数学认识特殊性的表现。

  概括数学本质的尝试

  数学认识的一般性表明,数学的感性认识表现为数学知识的经验性质;数学认识的特殊性表明,数学的理性认识表现为数学知识的演绎性质。因此,认识论中关于感性认识与理性认识的关系在数学认识论中表现为数学的经验性与演绎性的关系。所以,认识数学的本质在于认识数学的经验性与演绎性的辩证关系。那么数学哲学史上哲学家是如何论述数学的经验性与演绎性的关系,从而得出他们对数学本质的看法的呢?数学哲学史上最早探讨数学本质的是古希腊哲学家柏拉图。他在《理想国》中提出认识的四个阶段,认为数学是处于从感性认识过渡到理性认识的一个阶梯,是一种理智认识。这是柏拉图对数学知识在认识论中的定位,第一次触及数学的本质问题。17世纪英国经验论哲学家J.洛克在批判R.笛卡尔的天赋观念中建立起他的唯物主义经验论,表述了数学经验论观点。他强调数学知识来源于经验,但又认为属于论证知识的数学不如直觉知识清楚和可靠。德国哲学家兼数学家莱布尼茨在建立他的唯理论哲学中,阐述了唯理论的数学哲学观。他认为:“全部算术和全部几何学都是天赋的”;数学只要依靠矛盾原则就可以证明全部算术和几何学;数学是属于推理真理。他否认了数学知识具有经验性。德国哲学家康德为了克服唯理论与经验论的片面性,运用他的先验论哲学,从判断的分类入手,论述了数学是“先天综合判断”。由于这一观点带有先验性和调和性,所以它并没有解决数学知识的经验性与演绎性的辩证关系。康德以后,数学发展进入一个新时期,它的一个重要特点是公理化倾向。这一趋势使大多数数学家形成一种认识:数学是一门演绎的科学。这种观点的典型代表是数学基础学派中的逻辑主义和形式主义。前者把数学归结为逻辑,后者把数学看作是符号游戏。1931年哥德尔不完全性定理表明了公理系统的局限性和数学演绎论的片面性。这就使得一些数学家开始怀疑“数学是一门演绎科学”的观点,提出,数学是一门有经验根据的科学,但它并不排斥演绎法。这引起一场来自数学家的有关数学本质的讨论。拉卡托斯为了避免数学演绎论与经验论的片面性,从分析数学理论的结构入手,提出数学是一门拟经验科学。他说:“作为总体上看,按欧几里得方式重组数学也许是不可能的,至少最有意义的数学理论像自然科学理论一样,是拟经验的。”尽管拉卡托斯给封闭的欧几里得系统打开了第一个缺口,但是,拟经验论实际上是半经验论,并没有真正解决数学性质问题,因而数学家对它以及数学哲学史上有关数学本质的概括并不满意。1973年,数理逻辑学家A.罗宾逊说:“就应用辩证法来仔细分析数学或某一种数学理论(如微积分)而言,在我所读的从黑格尔开始的这方面的著作中,还没有发现经得起认真批判的东西。”因此,当计算机在数学中的应用引起数学研究方式的变革时,特别是当计算机证明了四色定理和借助计算机进行大量试验而创立分形几何时,再次引起了数学家们对“什么是证明?”“什么是数学?”这类有关数学本质的争论。

  数学本质的辩证性

  正因为一些著名数学家不满意对数学本质的概括,他们开始从数学研究的体验来阐明数学的经验性与演绎性的相互关系。D.希尔伯特说:数学的源泉就在于思维与经验的反复出现的相互作用,冯·诺伊曼说:数学的本质存在着经验与抽象的二重性;R.库朗说:数学“进入抽象性的一般性的飞行,必须从具体和特定的事物出发,并且又返回到具体和特定的事物中去”;而A.罗宾逊则寄希望于:“出现一种以辩证的研究方法为基础的、态度认真的数学的哲学”。本节将根据数学知识的三种形态(经验知识、公理系统和形式系统)及其与实践的关系,具体说明数学的经验性与演绎性的辩证关系。经验知识是有关数学模型及其解决方法的知识。数学家利用数学和自然科学的知识,从现实问题中提炼或抽象出数学问题(数学模型),然后求模型的数学解(求模型解),并返回实践中去解决现实问题。这一过程似乎是数学知识的简单应用,但事实并非如此。因为数学模型是主观对客观的反映,而人的认识并非一次完成,特别是遇到复杂的问题时,需要修正已有的数学模型及其求解的方法和理论,并经多次反复试验,才能解决现实问题。况且社会实践的发展,使得旧的方法和知识在解决新问题时显得繁琐,甚至无能为力,从而迫使数学家发明或创造新的方法、思想和原理,并在实践中得到反复检验,产生新的数学分支学科。这时的数学知识是在解决实践提出的数学问题中产生的,属于经验知识,具有经验的性质。数学的经验性向演绎性转化第一部分讲过,数学经验知识具有零散性和不严密性,有待于上升或转化为系统的理论知识;而数学对象的特殊性使得这种转化采取特殊的途径和方法——公理法,产生特有的理论形态——公理系统。所以,数学的经验性向演绎性的转化,具体表现为经验知识向作为理论形态的公理系统的转化。公理系统是应用公理方法从某门数学经验知识中提炼出少数基本概念和公理作为推理的前提,然后根据逻辑规则演绎出属于该门知识的命题构成的一个演绎系统。它是数学知识的具体理论形态,是对数学经验知识的理论概括。就其内容来说,是经验的;但就其表现形式来说,是演绎的,具有演绎性质。因为数学成果(一般表现为定理)不能靠归纳或实验来证实,而必须通过演绎推理来证明,否则,数学家是不予承认的。公理系统就其对经验知识的概括来说,是理性认识对感性认识的抽象反映。为了证实这种抽象反映的正确性,数学家采取两种解决办法。一是让理论回到实践,通过实际应用来检验、修改理论。欧几里得几何的不严密性就是通过此种方法改进的。二是从理论上研究公理系统应该满足的性质:无矛盾性、完全性和公理的独立性。这就引导数学家对公理系统的进一步抽象,产生形式系统。形式系统是形式化了的公理系统,是由形式语言、公理和推理规则组成的。它是应用形式化方法从不同的具体公理系统中抽象出共同的推理形式,构成一个形式系统;然后用有穷推理方法研究形式系统的性质。所以,形式系统是撇开公理系统的具体内容而作的进一步抽象,是数学知识的抽象理论形态。它采用的是形式推理的方法,表现其知识形态的演绎性。数学的演绎性向经验性的转化这除了前面说过的认识论原因外,对公理系统和形式系统的研究也证实了这种转化的必要性。哥德尔不完全性定理严格证明了公理系统的局限性:(1)形式公理系统的相容性不可能在本系统内得到证明,必须求助于更强的形式公理系统才能证明。而相容性是对公理系统最基本的要求,那么在找到更强的形式公理系统之前,数学家只能像公理集合论那样,让公理系统回到实践中去,通过解决现实问题而获得实践的支持。(2)如果包含初等算术的形式公理系统是无矛盾的,那么它一定是不完全的。这就是说,即使形式系统的无矛盾性解决了,它又与不完全性相排斥。“不完全性”是指,在该系统中存在一个真命题及其否定都不可证明(称为不可判定命题)。所以,“不完全性”说明,作为对数学经验知识的抽象的公理系统,不可能把属于该门数学的所有经验知识(命题)都包括无遗。对于“不可判定命题”的真假,只有诉诸实践检验。因此,这两种情况说明,要解决公理系统的无矛盾性和不可判定命题,必须让数学的理论知识返回到实践接受检验。由此可见,数学的认识过程是:在解决现实问题的实践基础上获得数学的经验知识;然后上升为演绎性的理论知识(公理系统和形式系统);再返回到实践中,通过解决现实问题而证实自身的真理性,完善或发展新的数学知识。这是辩证唯物论的认识论在数学认识论上的具体表现,反映了数学本质上是数学知识的经验性与演绎性在实践基础上的辩证统一。

  演算的方法

  既然数学的本质是经验性与演绎性在实践基础上的辩证统一,那么能否对数学的本质进一步作出哲学概括呢?即用简洁的语言表达数学的本质,就像拉卡托斯说的“数学是拟经验的科学”那样。为此,本文提出,数学是一门演算的科学(其中“演”表示演绎,“算”表示计算或算法,“演算”表示演与算这对矛盾的对立统一)。在此,必须说明三点:何以如此概括?“演算”能否反映数学研究的特点以及能否反映数学本质的辩证性

  1.何以如此概括?首先,从理论上讲,数学本质是数学观的一个重要问题,而数学观与数学方法论是统一的,所以可以通过方法论来分析数学观。数学认识对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在,数学研究除了像自然科学那样仅仅采用观察、实验、归纳的方法外,还必须采用演绎法。因此,可以通过研究数学认识方法来反映数学认识的本质。其次,从事实上看,数学知识的经验性表明数学是适应社会实践需要而产生的,是解决实际问题的经验积累。社会实践提出的数学问题都要求给出定量的回答,而要作出定量的回答就必须进行具体的计算,所以计算表征了数学经验知识的特点。而对于各种具体的计算方法及其一般概括的“算法”(包括公式、原理、法则),也都可以用“算”来概括、反映数学知识的经验性在方法论上的计算或算法特点。同时,数学知识的演绎性反映数学认识在方法论上的演绎特点,所以,可以用“演”来反映数学知识的演绎性。因此,我们可以用“演算”来反映数学本质的经验性与演绎性。第三,为避免概括数学本质的片面性。自从数学分为应用数学与纯粹数学以后,许多数学家认为,数学来源于经验是很早以前的事,现在已经不是了,而是变成一门演绎科学了。而一般人也接受这种观点。但这样强调数学的演绎性特点,却忽视了数学具有经验性质的一面。为了避免这种片面性,这里特别通过数学方法论来概括和反映数学的本质。

  2.“演算”反映了数学研究的特点数学研究对象的特殊性产生了数学研究特有的问题:计算与证明。它们成为数学研究的两项主要工作。关于“证明”。数学对象的特殊性使得数学成果不能像自然科学成果那样通过实验来证实,而必须通过逻辑演绎来证明,否则数学家是不予承认的。所以,数学家如何把自己的成果表达成一系列的演绎推理(即证明)就成为重要工作。证明成为数学研究工作的重要特点。关于“计算”。数学本身就是起源于计算,即使数学发展到高度抽象理论的今天,也不能没有计算。数学家在证明一个定理之前,必须经过大量的具体计算,进行各种试验或实验,并加以分析、归纳,才能形成证明的思路和方法。只有在这时候,才能从逻辑上进行综合论证,表达为一系列的演绎推理过程,即证明。从应用数学来看,更是需要大量的计算,所以人们才发明各种计算机。在电子计算机广泛应用的今天,计算的规模更大了,以致在数学中出现数值实验。因此,计算成为数学研究的另一项重要工作。既然“计算与证明”是数学研究的两项主要工作和特点,那么“数学是演算的科学”这一概括是否反映出这一特点?“证明”是从一定的前提(基本概念和公理)出发,按照逻辑规则所进行的一种演绎推理。而“演(绎)”正可以反映“证明”这一特点。而“算”显然更可以直接反映“计算”或“算法”及其特点。由此可见,“演算”反映了数学研究的计算和证明这两项基本工作及其特点。

  3.“演”与“算”的对立统一反映数学性质的辩证性首先,从数学发展的宏观来看。数学史告诉我们,数学起源于“算”,即起源于物体个数、田亩面积、物体长度等的计算。要计算就要有计算方法,当各种计算方法积累到一定数量的时候,数学家就进行分类,概括出适用于某类问题的计算公式、法则、原理,统称为算法。所以数学的童年时期叫做算术,它表现为一种经验知识。当欧几里得建立数学史上第一个公理系统时,才出现“演绎法”。此后,“演”与“算”便构成了数学发展中的一对基本矛盾,推动着数学的发展。这在西方数学思想史中表现最为突出。大致说来,在欧几里得以前,数学思想主要是算法;欧几里得所处的亚历山大里亚前期,数学主要思想已由算法转向演绎法;从亚历山大里亚后期到18世纪,数学主要思想再次由演绎法转向算法;19世纪到20世纪上半叶,数学主要思想又由算法转向演绎法;电子计算机的应用促进了计算数学的发展及其与之交叉的诸如计算流体力学、计算几何等边缘学科的产生以及数学实验的出现。这一切又使算法思想重新得到发展,成为与演绎法并驾齐驱的思想。可以预言,随着计算机作为数学研究工具地位的确立,算法思想将成为今后相当长一个时期数学的主要思想。算法思想与演绎思想在数学发展过程中的这种更迭替代,从一个侧面体现了“演”与“算”这对矛盾在一定条件下的相互转化。所以,有的数学史工作者从方法论的角度把数学的发展概括为算法倾向与演绎倾向螺旋式交替上升的过程。其次,从数学研究的微观来看。“演”中有“算”,这充分表明了我们上面所分析的“证明”中包含着“计算”,包含着“算”向“演”转化。“算”中有“演”,这充分表现在算术和代数中。算术和代数表现为“算”,但是,算术和代数的“算”,并不是自由地计算,而是要遵循基本的四则运算及其规律,即计算要按照一定的计算规则,就像证明要遵守推理规则一样。所以“算”中包含着“演”,包含着“演”向“算”的转化。“演”与“算”的这种对立统一更充分地体现在计算机的数值计算和定理证明中。这种“算”与“演”的对立统一关系,从一个侧面反映了数学的经验性与演绎性的辩证关系,反映了数学性质的辩证性。综上所述,既然“演算”概括了数学研究的特点,反映了数学的经验性与演绎性及其辩证关系,我们就有理由把它作为对数学本质的概括,说“数学是一门演算的科学”。

数学思维十种思维方式

神奇的帕斯卡三角形-《DK儿童数学思维手册》读后感

  今年暑假,我读了老师推荐的《DK儿童数学思维手册》这本书。这本书是关于数学的,讲述了许多有趣的数学问题,这本书还荣获了“中华优秀科普图书奖”。虽然,书上有的内容我还看不懂,但是,我还是领略到了数学世界的魅力。

  这本书中,让我印象最深刻的是帕斯卡三角形。帕斯卡三角形是布莱士·帕斯卡发明的,他是一名科学家、数学家和发明家。帕斯卡三角形包含了很多神奇的数学规律,包括三角形数、平方数、幂数、以及很多类型的数列。帕斯卡三角形还可以用来学习概率,概率就是某件事情发生的可能性,这在生活中非常实用。计算机的发明,也是和帕斯卡有关,所以,帕斯卡三角形真的是一个很厉害的数学知识。

  我很喜欢这本书,因为通过阅读这本书,我的数学思维可以得到很好的锻炼,让我更聪明。

数学思维方法读后感

  周末在家打开书香中国的网页,看到了《数学思维方法》这本书,顿时被里面生动的案例吸引,如饥似渴的读起来。

  如美国数学家哈尔莫斯所说“问题是数学的心脏”,要开展思维,必须由数学问题开始,而一个好的数学问题,可以引出一串数学问题,即形成所谓的问题链。其次,对于数学问题,人们在思考分析的基础上,通过一系列合情合理的方法,会形成对于该问题结论的某种猜想。数学问题在数学思维中具有首要性,由此我们应该对数学问题有个详细的了解。合情推理虽然对于发现数学猜想具有重要作用,但由合情推理得到的数学猜想,毕竟是猜想。而猜想的正确性,则待于严密的数学证明。通过证明得到的数学结论,那就是数学定理。数学的结论性知识,基本上以定义、公里和定理的形式来表达。但这些定理、定义和公理都是数学中的一个个知识点,要把这些知识点串联起来,形成一个知识系统,在数学中有一种特殊的方法,那就是公理化方法。这是数学特有的思维方法。数学建模是运用数学解决实际问题的有效方法,事实上,所谓数学建模就是建立起有关实际问题的相应数学模型,通过对数学模型的研究,达到解决实际问题的目的。因而,数学建模实际上是一个运用数学思维方法解决问题的过程。

  分析法、综合法、抽象法和概括法是数学思维方法最基本的方法。数学语言的独特性表现为它是一种独一无二的语言,这是目前世界上唯一的一门描写自然、社会和人类社会中数量关系、空间形式和抽象结构,表达科学思想的世界通用语言。不同母语的数学家,虽然他们的自然语言不同,在许多方面一时难以沟通,但一旦讨论起数学问题,他们就有共同的语言,可以毫无障碍的进行沟通,共同来思维同一个对象。数学思维往往表现为是一种系统的综合性思维,很少有用单一的思维形式来解决问题的。数学又是一门高度严谨的学科,所有的理论都必须经过严格的逻辑论证得到,作为数学活动结果,即数学结论是十分严谨的。从数学本身来看,数学活动主要包括三个方面:数学的发现、论证和应用。于是,数学思维方法应包括数学发现的思维方法、数学论证的思维方法和数学应用的思维方法三的部分。事实上,抽象和概括、分析和综合,既贯穿于数学思维的始终,又是数学思维的实质。

  欧几里得在前人工作的基础上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的、严密逻辑体系的《几何原本》。这是世界上第一个公理化系统。

  哈尔莫斯在《数学的心脏》中,把数学问题分为平凡问题和深奥问题。所谓平凡的数学问题是指那些接近基本定义的,易懂、易证的数学问题。好数学问题的标准是具有启发性和可发展性。所谓启发性,主要是指数学问题能启发人步步深入,直至问题的解决;即使暂时不能解决能让人舍不得放弃;有较强的探究性,能让人有所思也有所得,但又不能立即就把问题彻底解决。而可发展性,实际上是说,由一个数学问题可以发展为多个数学问题,即发展为数学问题链或数学问题群,而不是一个孤立的问题。数学问题的五条基本性质是首要性、数学性、探究性、链锁性和相对性。数学性是数学问题的基本性质,不具有数学性的问题就不是数学问题。例如,七桥问题就是这样的数学问题,在一般人眼中,它只是一个游戏,可在欧拉眼中,它却是个非常好的数学问题。

DK儿童数学思维手册

  这本书从我们的日常生活说起,展示了数学在生活中的应用,例如数学测量、图形转换、时间日历等。还介绍了数学的发展历史,数学名人等方方面面,其中包含了我最喜欢的数学问题之一迷宫。书中不仅介绍了简单型、复杂型和编织类的迷宫,还描述了如何创造一个克里特岛式迷宫。通过阅读迷宫知识,我才知道原来可以把复杂的迷宫转化成简单的路线图,又称为“网络”。在日常生活中像地铁的线路图和电子电路,都可以简化为网络图来处理。

  看来数学真是无处不在,所以我们要多阅读、多思考、多动手,探索数学奥秘,发现数学之美。

对数学思维定势的认识及解决对策

  定势是心理活动的一种准备状态,是过去的感知影响当前的感知。而思维定势就是过去的思维对当前思维的影响。思维定势具有强大的惯性,让人不易把握,它对培养人的创新精神有极大的阻碍作用。因此,要更好地激发学生的创新思维,提高学生学习数学的效果,就必须想方设法突破数学思维的定势。在小学数学教学中,笔者的认识与解决对策是:

  一、认识思维定势的客观存在,是突破它的基础

  思维定势在数学教学中是客观存在的,我们要弄清楚它们的类型、根源及在创新过程中起的负作用,才会主动克服这些思维障碍,警惕和排除思维定势对寻求新设想、方法所可能产生的束缚作用,从而自觉地发挥自身的创新能力。在数学教学中的思维定势主要有:书本知识的定势;教师的权威性定势;顺向思维定势;旧知识、旧经验的定势等。在数学教学中,我们只有认识到以上多种思维定势的客观存在,才会想方设法突破它,为培养学生的创新意识打下良好的基础。

  二、按照思维定势的类型,制定有效的对策

  思维定势的客观存在,让学生学习数学时容易因定势而产生错误的认识,思考数学问题时也容易出现思维上的偏差,并禁锢了学生学习数学的创新思维发展。那么,在数学教学中,我们如何按照思维定势的类型,制定有效的对策呢

  1.依据书本知识型定势,以求异思维应对

  所谓书本知识定势,就是在思考问题时不顾实际情况,不加思考地盲目运用书本知识,一切从书本出发,以书本为纲的思维模式。许多书本知识是有时效性的,当书本知识与客观事实之间出现差异时,受到书本知识的束缚,死抱住书本知识不放,就会成为思想障碍,失去获得创新的机会。例如:数学中的一些固定解题方法,固定的解题格式,固定的解答步骤,固定的公式等,会阻碍学生创新思维的发展,禁锢了学生的自主创新的思维。为此,在教学中,我们就要引导学生敢于思考、敢于发现、敢于质疑、敢于提出自己的想法。例如:在第十一册分数除法的应用例2的教学:美术组有25人,比航模组多1/4,航模组有多少人?课本中只介绍了用列方程解答X+(1/4)X=25。教师教学了列方程解答的方法后,引导学生思考:谁还能想到其他的方法解答?引导学生学会列出不同的方程解答:(1+1/4)X=25;25÷X=1+1/4。列出算术解答式:25÷(1+1/4);25÷5×4。接着,教师可设计一组相关的练习题,让学生尝试用不同的方法解答:(1)美术组有20人,比航模组少1/5,航模组有多少人?(2)美术组有20人,是航模组的1/4,航模组有多少人?(3)美术组有25人,航模组有20人,美术组比航模组多几分之几?航模组比美术组少几分之?祝浚?4)美术组和航模组共45人,美术组是航模组的1/4,美术组和航模组分别有多少人?(5)美术组和航模组共45人,美术组比航模组多1/4,美术组和航模组分别有多少人?(6)美术组和航模组共45人,航模组比美术组少1/5,美术组和航模组分别有多少人?学生用不同的方法解答后,引导学生说出各题的叙述有什么不同?解答方法上有什么不同?与书本例题有什么异同?这样,就让学生感受到书本的解答方法只是其中的一种,在学习中,我们可以突破书本的局限,大胆思考、大胆尝试,用不同的方法解决不同的实际数学问题。

  2.依据教师权威型定势,以平等与质疑思维应对

  在思维领域,不少人习惯引证权威的观点,不加思索地以权威的是非为是非,一旦发现与权威相违背的观点,就认为是错误的,这就是权威定势。教师的权威定势,对学生的创新意识有较强的束缚。现实教学中,大多数教师都喜欢在学生中显示自己的权威性,学生往往会碍于教师的权威无法自由发挥自己的想象力、不敢大胆质疑、不敢提出自己的想法,从而影响了学生思维的发展。那么,如何让学生消除教师的权威定势,让学生的思维自由发挥,提高学生的自主探究和创新能力呢?首先,教师要创设平等、和诣的课堂氛围,拉近师生的距离。同时,教师在教学过程中要以学生为主体与学生平等相处,敢于向学生认错,敢于与学生一起讨论,敢于取纳学生的意见,肯定学生有创新的解答、思路。并且教师还要鼓励学生敢于质疑、大胆质疑、学会质疑,对敢于提出质疑的学生要表扬鼓励,让学生在学习过程中无心理压力,发挥想象思维大胆提出自己不同的见解,敢于思考,敢于创新。例如:数学课堂中多取用师生讨论,小组讨论,让学生口述数理、算理,竞赛,用多种方法解题等形式,使学生能大胆质疑问难、敢于对教师的观点提出自己不同的想法。这对降低教师的权威定势,培养学生的创新意识都有很好的作用。

  3.依据顺向思维型定势,以逆向思维应对

  顺向思维定势,就是小学生在思考问题时,习惯了从已知条件入手、从字面上理解思考,只往一个方向思考,缺乏思维的灵活性,往往会容易出现思维偏差,造成解题的错误。面对一些较复杂的数学问题,就束手无策,难以解决。

  逆向思维是相对于顺向思维而言的另一种思维形式,是发散思维的一种。逆向思维,是指和正向思维方向相反而又相互联系的思维过程,即我们通常所说的“倒着想”或“反过来想一想”。逆向思维就是突破一般思维定势,从对立、颠倒、相反的角度去思考问题。数学教学培养逆向思维作为思维的一种形式,逆向思维蕴育着创造思维的萌芽,它是创造性人才必备的思维品质,也是人们学习和生活中必备的一种思维品质。它的基本特征是:从已有的思路反向去考虑和思索问题。这种思维形式反映了思维过程的间断性、突变性和反联结性,是对思维惯性的克服。我们在数学概念教学、计算过程教学和应用题教学中都能通过培养学生的逆向思维能力克服惯性顺向思维的定势。4.性质学习的顺向定势,可以逆叙方式作对策

  在数学解题中性质应用是一种比较常见的方法,但性质的逆运用容易被学生忽视,只要我们重视性质的逆运用,进行逆向思考,就会达到使问题解答简捷的目的。而在性质的教学中,应明确作为一个数学性质的命题,其逆命题不是总会成立的。有的性质的逆命题是成立的:如小数点向右移动一、二、三位那么小数值就扩大10、100、1000倍。还要学生学会逆向叙述:小数值要扩大10、100、1000倍,那么小数点就要向向右移动一、二、三位。又如:一个因数不变,另一个因数扩大几倍,积也扩大几倍。逆向叙述为:一个因数不变,在使积扩大几倍,另一个因数也要扩大几倍。有的性质的逆命题是不成立的:例如:0是整数,逆向叙述:整数是0,将命题的前提与结论的机械换位,导致命题错误。因此,数学教学中要训练学生科学的进行逆向叙述。例如,在学习了整除概念以后,得出:能整除的一定能除得尽这个结论。为了进一步搞清整除的概念,区分整除与除得尽,还应该反个方向想一想:能除得尽的一定能整除吗?同理,我们知道“两个质数一定是互质数”,那么“互质数一定是两个质数吗”?如果教师经常有意识地在新知教学中采用训练学生“逆向”思维的教学法,那么他的学生不仅所学的知识掌握得清楚正确、全面辩证,而且久而久之,他的学生的思维能力会高出其他学生,至少他们在解决问题时多了一条人家不易想到的思路。

  5.规则学习的顺向定势,可以逆用方式作对策

  低年级学生在开始学习计算时,常常只会用数数的办法,数完手指就数脚指。这种方法既慢又无法完成稍大的数的运算。那么,我们在教学中要通过学生理解掌握数的组成后,引导学生运用逆向思维,提高计算的能力。如:9-5=4,我们应该教给学生思考:9是由5和几组成的来解答。中年级学生在学习四则混合运算时,往往只会从左到右,先算乘除、后算加减,能简便的也不会运用简便方法计算,这样既耗时又不够准确,教师应引导学生灵活运用四则运算的有关定律、性质,能简便的要学会用简便方法计算。如:78×9+78,可引导学生逆用乘法分配律;7800÷25,可引导学生灵运用商不变的性质,从如何将除数转换成100来实现用简便方法计算的方向去思考;195-19-81+5,可引导学生运用加法交换律和减法的性质。又如:求10个5的和是多少?学生会因加法结果是和的定势影响,用10+5=15,教师应引导学生按乘法的意义来理解,实质是求几个相同加数的和的简便运算,应该用10×5=50。高年级学生在分数计算时会出现被整数计算方法思维定势影响,如分数加减法,会出现分子、分母分别相加减的错误,分数除法也会出现分子分母分别相除的错误。那么,教师在教学时应让学生先理解掌握分数单位的意义、分数除法的意义、分数四则运算的意义和方法,通过比较、综合等方法突破学生的思维定势。学生在学习解方程时,对求减数、除数的方程时往往因思维定势而出现错误。如:45.5-X=0.5,学生会出现这样解X=45.5+0.5;45.5÷X=0.5,学生会出现这样解X=45.5×0.5。那么,教师在教学时应该让学生逆向思考:X是什么数?根据四则运算中各部分的关系弄清这数应该用哪种数量关系来解答,引导学生第一题应该根据减数=被减数减-差来解答,第二题应该根据除数=被除数÷商来解答。

  学生在学习过程中客观地受到多种思维定势的影响,在思考数学问题时往往只凭经验,往一个方向思考,从而产生思考方法、思路、解答方法只是机械的重复,毫无新意,遇到新、难、繁的问题就会束手无策,这往往就会束缚住学生的创新意识的形成。但如果运用发散思维、逆向思维等多种思维方法,从多角度观察、分析问题,便是一种行之有效的突破思?S定势的方法。

  6.解题思考顺向定势,可以逆向思考作对策

  中低年级学生在解决实际问题时会出现一些顺向思维定势。如:求多用加、求少用减、求剩余用减、求一共用加、求几倍用乘、求是几倍用除等。教师要引导中低年级的学生会运用逆向思维,找准比较的标准量,理解所求的问题的实质是什么,应怎么想,才定怎么做。同时,教师要运用归类、比较、综合等方法引导学生发现问题的异同、解题方法上的联系与区别。例如:男生25人,比女生少5人,女生多少人?在思维定势下,学生可能会列出式子25-5=20(人)。这时,教师应引导学生理解:男生比女生少5人,女生反过来比男生多5人,女生才是大数,求女生就是求比男生多5人是多少人。这样,学生就很容易列出25+5的式子来解答了。

  中高年级的学生在解决实际问题时同样会出现一些顺向思维定势,影响学生解决实际的问题。如:学习了归一问题应用题后,对逆向归一问题应用题的解答会受顺向归一问题的影响。例如:一辆汽车3小行了210千米,照这样计算,6小时行多少千米?行140千米用几小时?学生对第一个问题比较容易理解,但对第二个问题就比较难理解,往往会出现用乘法来解答。教师应引导学生逆向思考,求用几小时,是知道了路程求时间,先求出速度,再用路程除以速度来解答。又如:从甲到乙地,3小时行了90千米,占全长的30%,照这样计算,还要几小时到达乙地?如果学生用一般的方法思考会把它看作归一应用题,列出式子:(90÷30%-90)÷(90÷3)=7(小时),如果教师引导学生从百分数应用题与归一应用题相结合的角度思考,学生会列出多种不同的式子:90÷30%×(1-30%)÷(90÷3),90÷30%÷(90÷3)-3,90÷30%÷(90÷3)×(1-30%),3×(90÷30%÷90)-3,l÷(30%÷3)-3,3×(l÷30%)-3,1÷(30%÷3)×(1-30%),有的学生还用比例的方法解。这样,使学生突破了学生以往用归一法解这类题目的思维定势,发展到从不同的角度、不同的思路、运用不同的方法去解这类题目的目的。再如:列方程解答应用题时,学生往往会因算术思维定势的影响,容易出现解题的错误。例如:爸爸今年40岁,比小明年龄的3倍多4岁,小明今年多少岁?学生会列出3X-4=40的错误方程,教师应该引导学生找出等量关系:小明年龄的3倍+4岁=爸爸40岁,从而能列出方程3X+4=40。另外,在分数应用题的解答中,生也容易因思维定势,造成错误的解题。例如:甲数是60,相当于乙数的3/5,乙数是多少?学生往往会错误列成:60×3/5。我们要引导学生解题时要先找准单位“1”,理解本题的单位“1”是乙数,求单位“1”用除法解答。同时,要求学生改变题目的叙述方式,再列出不同的式子解答:甲相当于乙的60%、甲与乙的比是3:5、乙相当于甲的5/3倍、甲比乙少2/5等,引导学生列出式子:60÷3/5;60÷60%;60÷3×5;60×5/3;60÷(1-2/5)。又如:甲是乙的3/5,那么乙是甲的?;甲比乙多3/5,那么乙比甲少?甲的3/5与乙的2/5相等,那么甲乙?这几道题目,学生往往最容易错,原因是顺向思维的定势,我们在教学这些题目时,一定要引导学生找准单位“1”并运用逆向思考,才能正确地解答。7.旧知识、旧经验型定势,以分析思维应对

  在问题解决活动中,思维定势的作用是:根据面临的问题联想起已经解决的类似的问题,将新问题的特征与旧问题的特征进行比较,抓住新旧问题的共同特征,将已有的知识和经验与当前问题情境建立联系,利用处理过类似的旧问题的知识和经验处理新问题,或把新问题转化成一个已解决的熟悉的问题,从而为新问题的解决做好?e极的心理准备;思维定势对问题解决虽有积极的一面,但也有消极的一面,它容易使我们产生思想上的惰性,养成一种呆板、机械、千篇一律的解题习惯。当新旧问题形似质异时,思维的定势往往会使解题者步入误区。大量事例表明,旧知识、旧经验的思维定势确实对问题解决具有较大的负面影响,但如果教师能恰当地点拨,灵活地运用旧知识,也可以把这种阻碍作用变为促进创新意识的动力,这关键在于教师要点明新旧知识之间的联系与区别是什么,这样会让学生从旧知识中创新出多种新的方法。例如:在教学能被3整除的数的特征时,学生已有能被2、5整除的数的特征的基础,学生在思考时会从这个数的个位上去找规律,这往往很难找到规律。这时,教师应适当点拨:先让学生写出若干个3的倍数,如3、6、9、12、15、18、21等。再告诉学生:能被2、5整除的数的特征与能被3整除的数的特征相同的是都能被这几个数整除,并有一定的特征,区别是能被2、5整除的数的特征只要看这个数的个位就知道能否整除,而能被3整除的数的特征不能从这个数的个位看出,要从这个数各数位上的数的特点来找规律。然后让学生开动脑筋探索出能被3整除的数的特征,这样学生会从多方面思考,提出多种不同的有趣的想法,总结出规律,培养了自主探究、创新学习的精神。又如:在学习了长方形的面积计算公式后,在学习平行四边形的面积计算时,我们可以运用新旧知识的迁移、转化,推导出平行四边形的面积计算方法,但在运用公式计算时,往往受长方形面积计算公式的影响,当出现知道平行四边形的两条邻边和高时,造成学生用邻边相乘的错误。因此,在教学时,我们既要灵活运用旧知识、旧经验引导学生学习新知,又要十分重视新旧知识间的区别,尽量降低旧知识、旧经验定势对学生学习的影响。

  总之,各种思维定势对学生学习数学新知识和创新思维的培养有较大的阻碍作用,数学教学中必须多想办法,采用有效的策略,恰当地引导学生突破各种思维定势,才能更好地激发学生的创新思维,提高数学教学效果。

数学思维超脑

  9月23日   星期三   晴

  今天下午,我去上兴趣班了!是数学思维超脑,今天讲的是24点,老师抽出扑克牌,然后在黑板上写数字,让我们把这些数字的总数算出来,但必须总数要等于二十四,看起来很简单,可是老师挖了不少坑,因为有些数字是无解的。我们冥思苦想,总算是想出了答案,对了,老师还让我们四个大组比拼,谁的五角星最多,那个大组就获胜,最后,我们组获胜啦!我们一人得到了一个小玩具,最后依依不舍的离开了教室,兴高采烈的回家了。

  今天,我很开心,因为我体会到了数学的乐趣,感觉数学奥妙大门朝我打开了,让我对数学更加的热爱了。

数学竞赛中的数学思维

  数学竞赛是当前数学教育实践中的一个重要的组成部分,数学思维则是人脑和数学对象(空间形式、数量关系、结构关系)交互作用并按照一般思维规律认识数学内容的内在理性活动。数学中的形象思维、直觉思维、定势思维和反定势思维以及创造性思维是数学思维结构的基本成分。以下笔者将结合数学竞赛中试题的分析来阐述形象思维、直觉思维、定势思维以及创造性思维。

  一、形象思维

  数学中形象思维是凭借各种形象来思考、表述和展开数学问题的思维活动。形象思维的形式有:意象、联想、想象。

  例1:六年级有学生54人,每人至少爱好一种球,其中爱好乒乓球的有40人,爱好足球的有20人,爱好排球的有30人。

  既爱好乒乓球又爱好排球的有18人;既爱好足球又爱好乒乓球的有14人;既爱好足球又爱好排球的有12人,对于这三种都爱好的有几人

  分析:我们用韦恩图(画三个圆)表示题中的数量关系,三个圆两两相交,分隔成7块,设三种都爱好的有x人,那么每一块所表示的意义就一目了然了。(如图)

  解:设三种都爱好的有x人,列方程:(8+x)+(18-x)+(14-x)+x+x+(12-x)+(x-6)=54

  x+46=54

  x=8

  本题通过画图,把题中的各个数量以及数量之间的关系清楚地呈现出来,把繁杂的数字用具体的形象来展现。

  二、直觉思维

  数学直觉思维是直接反映数学对象、结构以及关系的思维活动。这是数学直觉思维的本质特征,数学在一定程度上就是在问题解决中得到发展的,问题的解决也离不开直觉。

  例2:计算■+■+■

  分析一:三个分子都是1,分母都是三个连续自然数的乘积,这样我们想到用“裂项相消”的办法。

  解法一:原式=■×(■-■)+■×(■-■)+■×(■-■)=■×(■-■+■-■+■-■)

  =■×(■-■)

  =■

  分析二:由于项数不多,故采用通分计算。

  原式=■+■+■

  =■

  =■

  “裂项相消”是竞赛中常用的,本题也可采用,但优势不大。

  但若碰到:

  “求■+■+■+.+■的值”时,用“裂项相消”的方法就非常方便简单了。三、定势思维

  定势思维是指人们用某种固定的思维模式去分析问题、解决问题。这种固定模式是已知的,事先有所准备的,具体地说,思维中的定势包括定向、定法、定序三个主要方面的内容。

  例3:如下图,方格纸上放了20枚棋子,以棋子为顶点的正方形又有个。

  分析:采用分类讨论的方法来做(定法)。对于这种计数题,很容易遗漏或者重复计算。用分类讨论的方法思路很清晰,也便于做完后检查,查漏补缺。

  解:以正方形面积大小来分类计数:

  设相邻两点的距离为1,则正方形的面积为1的有9个;面积为2的有4个;面积为5的有2个;面积为8的有4个;面积为13的有2个。

  所以,共有9+4+2+4+2=21个正方形。

  四、创造性思维

  创造性思维是指以新的材料、从新的角度,用新的程序和方法处理、加工信息,从而获得新成果的思维活动和过程。创造性思维的特征有独创性、灵活性、综合性。

  例4:设A=9876543×3456789,B=9876544×3456788,那么。

  (1)AB(2)A=B(3)AB,选(1)

  解法二:本题可看成两个矩形的面积大小比较,其中一个矩形的长为9876543,宽为3456789;另一个矩形的长为9876544,宽为3456788。为了比较他们的面积,画出这两个矩形的示意图,并按图中所示尽可能将它们重叠在一起,去掉重叠部分后,两个矩形都剩下宽为1的矩形,显然画竖条的矩形面积比画横条的矩形面积要大,即故AB,故选(1)。

  解法二的方法比较新颖,有创造性突破了代数的计算,从而转换到几何上的比较大小,具有直观性,同时可以开拓学生的思维。

  数学竞赛活动考察的是学生的数学思维和数学能力,因此数学竞赛的本质是数学思维的学习,同时,我们也可以通过数学竞赛来提高数学思维能力。

数学必须掌握的数学思想方法

  一、转化与化归思想转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。转化与化归思想是在研究和解决数学问题时采用某种方式,如借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想。转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。

  二、数形结合思想在数学学习中,我们会运用到很多数学思想方法,其中数形结合是数学解题中最常用的思想方法之一。运用数形结合的思想,我们可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质,这样很多问题便迎刃而解,且解法容易理解和消化。数形结合思想当中“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。数形结合思想在中学数学中占有非常重要的地位,我们在应用数形结合思想解决问题,应充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。

  三、分类讨论思想分类讨论思想也是我们接触接触比较多的数学思想,它是根据所研究对象的性质差异,分各种不同的情况予以分析解决。分类讨论思想方法我们在很多数学内容里都能找到它的影子,它依据一定的标准,对问题进行分类、求解。分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论,分类讨论思想有利于学会完整地考虑问题,化整为零地解决问题。很多学生在做分类讨论题的时候经常出错,不是忘记分类讨论,就是分类讨论不全,即使都考虑到所有分类谈论情况,也因一些情况丢失分数。在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。因此,遇见分类讨论,我们自己要有分类讨论意识,知道如何下手,如分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等。

  四、函数与方程思想方程与函数相互联系、相互渗透,一个函数的表达式,就可以转化成一个方程,一个方程我们可以看成一个或几个函数“混合”。这种特殊转化关系,让许多方程方面的问题可用函数的方法解决;同样,许多函数方面的问题也可以用方程的方法解决。方程是研究数量关系和变化规律的数学模型。方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,(通常设未知数为x),通常在两者之间有一个等号“=”。方程思想与函数思想之间关系的实质是提取问题的数学特征。方程作为模型,可以对一些实际(数学)问题构造方程模型;列出方程并求解。函数用联系和变化的观点研究数学对象,抽象其数量特征,建立函数关系。在我们解决数学问题的过程中,构造出函数模型,化归为方程,或通过方程模式,构造函数关系,实现函数与方程的互相转化,达到解决问题的目的。因此,运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化。数学思想方法是很多人学习数学一个薄弱环节,这是因为我们学习数学首先是掌握知识点,这是数学的外在形式,但数学思想方法则是数学的内在形式,不容易发现。如果一个人只是单单掌握知识点,是很难解决问题,很难学好数学,如一些学生上课都听得很懂,但自己做作业就错误百出,无法独立完成作业。因此,我们要真正获取数学知识,那么就必须掌握数学思想方法,把数学思想和方法学好了,学会运用数学思想方法。我们一旦掌握了数学思想方法,数学学习就会触类旁通,提高数学能力。

数学中的“数学思维”

  国际上的相关研究表明,即使对小学数学这样十分初等的数学内容也同样体现了一些十分重要的数学思维形式及其特征性质。数学思维的突出强调是国际范围内新一轮数学课程改革的一个重要特征,我国的《全日制义务教育数学课程标准(实验稿)》关于数学教育目标的论述中就可清楚地看出。然而,就小学数学教育的现实而言,上述的理念还不能说已经得到了很好的贯彻,而造成这一现象的一个重要原因就是以下的认识:小学数学的教学内容过于简单,因而不可能很好地体现数学思维的特点。

  一、“数学思维”的基本形式

  现代关于数学思维研究的一项重要成果指明了所谓的“凝聚”,也即由“过程”向“对象”的转化构成了算术以及代数思维的基本形式,这也就是说,在数学特别是算术和代数中有不少概念在最初是作为一个过程得到引进的,但最终却又转化成了一个对象──对此我们不仅可以具体地研究它们的性质,也可以此为直接对象去施行进一步的运算。对于所说的“凝聚”可进一步分析如下:

  (一)“凝聚”事实上可被看成“自反性抽象”的典型例子,而后者则又可以说集中地体现了数学的高度抽象性,即“是把已发现结构中抽象出来的东西射或反射到一个新的层面上,并对此进行重新建构”。这正如著名哲学家、心理学家皮亚杰所指出的:“全部数学都可以按照结构的建构来考虑,而这种建构始终是完全开放的……当数学实体从一个水平转移到另一个水平时,它们的功能会不断地改变;对这类‘实体’进行的运演,反过来,又成为理论研究的对象,这个过程在一直重复下去,直到我们达到了一种结构为止,这种结构或者正在形成‘更强’的结构,或者在由‘更强的’结构来予以结构化。”例如,由加法到乘法以及由乘法到乘方的发展显然也可被看成更高水平上的不断“建构”。

  (二)“凝聚”主要包括以下三个阶段:1.内化;2.压缩;3.客体化。其中,“内化”和“压缩”可视为必要的准备。前者是指用思维去把握原先的视觉性程序,后者则是指将相应的过程压缩成更小的单元,从而就可从整体上对所说的过程作出描述或进行反思──我们在此不仅不需要实际地去实施相关的运作,还可从更高的抽象水平对整个过程的性质作出分析;另外,相对于前两个阶段而言,“客体化”则代表了质的变化,即用一种新的视角去看一件熟悉的事物:原先的过程现在变成了一个静止的对象。容易看出,上述的分析对于我们改进教学也具有重要的指导意义。例如,所说的“内化”就清楚地表明了这样一点:我们既应积极提倡学生的动手实践,但又不应停留于“实际操作”,而应十分重视“活动的内化”,因为,不然的话,就不可能形成任何真正的数学思维。另外,在不少学者看来,以上的分析在一定程度上表明了“熟能生巧”这一传统做法的合理性。

  (三)由“过程”向“对象”的过渡不应被看成一种单向的运动;恰恰相反,这两者应被看成同一概念心理表征的不同侧面,我们应善于依据不同的情景与需要在这两者之间作出必要的转换,包括由“过程”转向“对象”,以及由“对象”重新回到“过程”。

  综上可见,在算术的教学中我们应自觉地应用和体现“凝聚”这样一种思维方式。

  二、数学思维的互补与整合。

  首先,互补与整合的数学思维形式对于小学数学具有特殊的重要性。我们应注意同一概念的不同解释间的互补与整合。具体地说,与加减法一样,有理数的概念也存在多种不同的解释,如部分与整体的关系,商,算子或函数,度量,等等;但是,正如人们所已普遍认识到了的,就有理数的理解而言,关键恰又在于不应停留于某种特定的解释,更不能将各种解释看成互不相关、彼此独立的;而应对有理数的各种解释很好地加以整合,也即应当将所有这些解释都看成同一概念的不同侧面,并能根据情况与需要在这些解释之间灵活地作出必要的转换。

  其次,我们应注意不同表述形式之间的相互补充与相互作用。这也正是新一轮数学课程改革的一个重要特征,即突出强调学生的动手实践、主动探索与合作交流:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式……教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”由于实践活动(包括感性经验)构成了数学认识活动的重要基础,合作交流显然应被看成学习活动社会性质的直接体现和必然要求,因此,从这样的角度去分析,上述的主张就是完全合理的;然而,需要强调的是,除去对于各种学习方式与表述形式的直接肯定以外,我们应更加重视在不同学习方式或表述形式之间所存在的重要联系与必要互补。

  最后,我们应清楚地看到在形式和直觉之间所存在的重要的互补关系。特别是,就由“日常数学”向“学校数学”的过渡而言,不应被看成对于学生原先所已发展起来的朴素直觉的彻底否定;毋宁说,在此所需要的就是如何通过学校的数学学习使之“精致化”,以及随着认识的深化不断发展起新的数学直觉。在笔者看来,我们应当从这样的角度去理解《课程标准》中有关“数感”的论述,这就是,课程内容的学习应当努力“发展学生的数感”,而后者又并非仅仅是指各种相关的能力,如计算能力等,还包含“直觉”的含义,即对于客观事物和现象数量方面的某种敏感性,包括能对数的相对大小作出迅速、直接的判断,以及能够根据需要作出迅速的估算。当然,作为问题的另一方面,我们又应明确地肯定帮助学生牢固地掌握相应的数学基本知识与基本技能的重要性,特别是,在需要的时候能对客观事物和现象的数量方面作出准确的刻画和计算,并能对运算的合理性作出适当的说明──显然,后者事实上已超出了“直觉”的范围,即主要代表了一种自觉的努力。

  综上可见,即使是小学数学的教学内容也同样体现了一些十分重要的数学思维形式及其特征性质,因此,在教学中我们应作出切实的努力以很好地落实“帮助学生学会基本的数学思想方法”这一重要目标。

考研数学的思维定势

  一、《高数解题的四种思维定势》

  1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

  2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

  3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

  4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

  二、《线性代数解题的八种思维定势》

  1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=。

  2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

  3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

  4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。

  5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

  6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

  7.若已知A的特征向量ζ,则先用定义Aζ=λζ处理一下再说。

  8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

  三、《概率与数理统计解题的九种思维定势》

  1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。

  2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式

  3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。

  4.若题设中给出随机变量X~N则马上联想到标准化~N(0,1)来处理有关问题。

  5.求二维随机变量(X,Y)的边缘分布密度fx的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而fy的求法类似。

  6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

  7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。

  8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

  9.若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用x分布,t分布和F分布的定义进行讨论。

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

教师三年规划个人幼儿园

怎样考在职研究生