韩信点兵的故事

互联网 2024-04-01 阅读

韩信点兵的故事

  韩信(约公元前231年-前196年),汉族,淮阴(原江苏省淮阴县,今淮安市淮阴区)人,西汉开国功臣,中国历史上杰出军事家,与萧何、张良并列为汉初三杰,与彭越、英布并称为汉初三大名将。关于韩信点兵的故事!下面我们一起来看看吧!

  汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”

  刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我的想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法。

韩信点兵的故事

韩信将兵,多多益善

  【释读】 将:统率,指挥。比喻越多越好。

  【出处】 西汉司马迁《史记淮阴侯列传》:上曰:于君何如?曰:臣多多而益善耳。

  【典故】

  韩信是秦末汉初著名军事家,淮阴(今江苏淮阴西南)人,曾被汉高祖刘邦拜为大将,为灭楚兴汉做出巨大贡献,与萧何、张良二人合称为汉初三杰。韩信率汉军平定齐地后,自封为齐王,引起了刘邦的猜忌。刘邦称帝后,有人密告韩信阴谋反叛。于是刘邦采用陈平的计策,假称游览云梦泽(沼泽名,楚之名胜,在今湖北境内),在韩信到陈地朝见他时,将韩信逮捕,押解进京。回到京城洛阳后,刘邦宣布大赦,韩信被削去齐王封号,改封淮阴侯。后来,刘邦与韩信的关系,稍有缓和。有一次,在宴席上,刘邦问韩信:依你看,象我这样的人能带多少兵马?韩信答道:陛下可以带领十万兵马。刘邦又问:那么你呢?韩信毫不谦虚地说:臣多多而益善耳(我是越多越好)!刘邦于是笑道:你既然如此善于带兵,怎么被我逮住了呢?韩信沉吟半晌才说:陛下虽不擅于率兵但却擅于驾驭将领,这就是原因所在。

  原文:上常从容与信言诸将能不,各有差。上问曰:如我,能将几何?信曰:陛下不过能将十万。上曰:于公何如?曰:如臣,多多而益善耳。上笑曰:多多益善,何为我禽?信曰:陛下不能将兵,而善将将,此乃信之所以为陛下禽也。且陛下所谓天授,非人力也。

  司马迁《史记淮阴侯列传》

  译文:刘邦曾经随便和韩信讨论各位将领的才能,(认为)他们各有高下。刘邦问道:像我自己,能带多少士兵?韩信说:陛下不过能带十万人。刘邦说:那对你来说呢?韩信回答:像我,越多越好。刘邦笑道:统帅士兵的越多越好,那(你)为什么被我捉住?韩信说:陛下不善于带兵,但善于统领将领,这就是韩信我被陛下捉住的原因了。而且陛下的能力是天生的,不是人们努力所能达到的。

韩信将兵

  【注音】hán xìn jiàng bīng

  【成语故事】西汉初期,韩信最初投奔项羽,没有得到重用,就去投奔刘邦,经丞相萧何极力推荐,才担任汉军的大将军。一次刘邦问韩信能够带多少兵,韩信回答说越多越好,因此得罪了刘邦。后来西汉巩固后,韩信被封为淮阴侯,不久就朝廷所杀。

  【典故】上曰:‘于君何如?’曰:‘臣多多而益善耳。’西汉·司马迁《史记·淮阴侯列传》

  【释义】韩信:刘邦的将军;将:统率,指挥。比喻越多越好。

  【用法】作宾语、定语;常与“多多益善”连用

  【近义词】多多益善

  【相反词】宁缺毋滥

  【成语示列】有强的领导骨干,办得好,那是韩信将兵,多多益善。毛泽东《关于农业互助合作的两次谈话》

韩信点兵的成语故事

  在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余4,求这个数。这样的问题,也有人称为“韩信点兵”。它形成了一类问题,也就是初等数论中的解同余式。

  ①有一个数,除以3余2,除以4余1,问这个数除以12余几

  解:除以3余2的数有:2,5,8,11,14,17,20,23……

  它们除以12的余数是:2,5,8,11,2,5,8,11……

  除以4余1的数有:1,5,9,13,17,21,25,29……

  它们除以12的余数是:1,5,9,1,5,9……

  一个数除以12的余数是唯一的上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。如果我们把①的问题改变一下,不求被12除的余数,而是求这个数。很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,……,无穷无尽。事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件。《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案。

  ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。

  解:先列出除以3余2的数:2,5,8,11,14,17,20,23,26……

  再列出除以5余3的数:3,8,13,18,23,28……

  这两列数中,首先出现的公共数是8。3与5的最小公倍数是15。两个条件合并成一个就是8+15×整数,列出这一串数是8,23,38,……,再列出除以7余2的数2,9,16,23,30……

  就得出符合题目条件的最小数是23。

  事实上,我们已把题目中三个条件合并成一个:被105除余23。

  河南省鹤壁市淇县云梦山鬼谷子

  中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”

  术曰:“三三数剩一置几何?答曰:五乘七乘二得之七十。

  五五数剩一复置几何?答曰,三乘七得之二十一是也。

  七七数剩一又置几何?答曰,三乘五得之十五是也。

  三乘五乘七,又得一百零五。

  则可知已,又三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”

关于韩信点兵的故事

  韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。

  我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?NX靓童网

  首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然後再加3,得9948(人)。

  中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」

  答曰:「二十三」

  术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」

  孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(ChineseRe)在近代抽象代数学中占有一席非常重要的地位。

韩信点兵的故事

  韩信是中国古代一位有名的大元帅。他少年时就父母双亡,生活困难,曾靠乞讨为生,还经常受到某些泼皮的欺凌,胯下之辱讲的就是韩信少年时被泼皮强迫从胯下钻过的事。后来他投奔刘邦,展现了他杰出的军事才能,为刘邦打败了楚霸王项羽立下汗马功劳,开创了刘汉皇朝四百年的基业。民间流传着一些以韩信为主角的有关聪明人的故事,韩信点兵的故事就是其中的一个。

  相传有一次,韩信将1500名将士与楚王大将李锋交战。双方大战一场,楚军不敌,败退回营。而汉军也有伤亡,只是一时还不知伤亡多少。于是,韩信整顿兵马也返回大本营,准备清点人数。当行至一山坡时,忽有后军来报,说有楚军骑兵追来。韩信驰上高坡观看,只见远方尘土飞扬,杀声震天。汉军本来已经十分疲惫了,这时不由得人心大乱。韩信仔细地观看敌方,发现来敌不足五百骑,便急速点兵迎敌。不一会儿,值日副官报告,共有1035人。他还不放心,决定自己亲自算一下。于是命令士兵3人一列,结果多出2名;接着,他又命令士兵5人一列,结果多出3名;再命令士兵7人一列,结果又多出2名。韩信马上向将士们宣布:值日副官计错了,我军共有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”,于是士气大振。一时间旌旗摇动,鼓声喧天,汉军个个奋勇迎敌,楚军顿时乱作一团。交战不久,楚军大败而逃。

  战事结束后,部将好奇地问韩信:“大帅是如何迅速地算出我军人马的呢?”韩信说:“我是根据编队时排尾的余数算出来的。”

  韩信到底是怎么算出来的呢?这是中国古代流传于民间的一道趣味算术题,叫做韩信点兵,还有一首四句诗隐含了解题的法门:

  “三人同行七十稀,五树梅花廿一枝。

  七子团圆正半月,除百零五便得知。”

  诗里让人记住这几个数字:3与70,5与21,7与15,还有105(也就是3、5、7的公倍数)。这些数是什么意思呢?题中3人一列多2人,用2×70;5人一列多3名,用3×21;7人一列多2人,用2×15,三个乘积相加:

  2×70+3×21+2×15=233

  用233除以3余2,除以5余3,除以7余1,符合题中条件。但是,因为105是3、5、7的公倍数,所以233加上或减去若干个105仍符合条件。这样一来,128、338、443、548、653……都符合条件。总之,233加上或减去105的整数倍,都可能是答案。韩信根据现场观察,选择了和1035最接近的数字1073。

  诗歌里的70,21,15又是怎么得来的呢

  70是5和7的公倍数,除以3余1;

  21是3和7的公倍数,除以5余1;

  15是3和5的公倍数,除以7余1。

  中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”

  答曰:“二十三。”

  术曰:“三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”

  什么意思呢?用现代语言说明这个解法就是:

  首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。如果所求的数被3除余2,那么就取数70×2=140,140是被5与7整除而被3除余2的数。如果所求数被5除余3,那么取数21×3=63,63是被3与7整除而被5除余3的数。如果所求数被7除余2,那就取数15×2=30,30是被3与5整除而被7除余2的数。

  140+63+30=233,由于63与30都能被3整除,所以233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。 105是3、5、7的公倍数,前面说过,凡是满足233加减105的整数倍的数都是符合题意的,因此依定理译成算式解为:

  70×2+21×3+15×2=233

  233-105×2=23

  这就是有名的“中国剩余定理”,或称“孙子定理”,它和韩信点兵是一个道理。

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

白菜的做法大全

水仙花的花语