初一数学上册知识点
数学学霸笔记
第一章丰富的图形世界
一、知识框架
二、知识概念
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:
(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.②、长方体、棱柱的截面与正方体的截面有相似之处.
(2)需要记住的要点:
几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、(正方形)圆锥圆、三角形球圆
7、从三个方向看物体的形状
三个方向看:从正面看,从左面(或右面)看,从上面看看到几何体的形状图。
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章有理数及其运算
一、知识框架
二、知识概念
1、有理数的概念及分类:①?②
整数和分数统称为有理数。
注意:因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.
2、数轴:
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、相反数:
只有符号不同的两个数叫做互为相反数,零的相反数是零。
注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等。②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。
4、绝对值:
(1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(a≥0)
0和正数的绝对值等于它本身,负数的绝对值等于它的相反数。
零的绝对值是它本身,也可看成它的相反数,若a=a,则a≥0;若a=-a,则a≤0。绝对值的问题经常分类讨论;
(2)绝对值的有关性质
①对任意有理数a,都有a≥0;
②若a=0,则a=0;
③若a=b,则a=b或a=-b;
④若a=b(b0),则a=±b;
⑤若a+b=0,则a=0且b=0;
⑥对任意有理数a,都有a=-a.
5、有理数大小的比较法则:
在数轴上表示的两个数,右边的数总比左边的数大(大数-小数﹥0,即右边的数-左边的数﹥0);
正数都大于0,负数都小于0,正数大于一切负数;
两个负数,绝对值大的反而小。
6、倒数:
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。正数的倒数是正数,负数的倒数是负数。
倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数。
7、有理数加法法则:
①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数同0相加,仍得这个数。
一些巧算方法:a、互为相反的两个数,可以先相加;b、符号相同的数,可以先相加;c、分母相同的数,可以先相加;d、几个数相加能得到整数,可以先相加。
8、有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②可以利用加法则,加法交换律、结合律简化计算。
9、有理数乘法法则:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
如果两个数互为倒数,则它们的乘积为1。
乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。
10、有理数除法法则:
①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②除以一个数等于乘以这个数的倒数。
0除以任何非0的数都得0。0不可作为除数,否则无意义。
11、乘方的概念:
(1)求几个相同因数的积的运算,叫做乘方,即
在中,a叫做底数,n叫做指数,叫做幂。
(2)a2是重要的非负数,即a2≥0;若a2+b=0a=0,b=0;
(3)据规律底数的小数点移动一位,平方数的小数点移动二位.
注意:①一个数可以看作是本身的一次方;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
(4)乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④(除0以外任何数的0次方都得1)1的任何次幂都得1,0的任何次幂(除0次)都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
12、有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律
第三章整式的加减
一、知识框架
二、知识概念
1、代数式
字母可以表示任何数。
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
规定:单独的一个数字或字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、、、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米
2、单项式
由数与字母或字母与字母相乘组成的代数式叫做单项式。单独一个数或一个字母也叫单项式。
(1)单项式中的数字因数叫做单项式的系数。
(2)如果只是一个数字,系数是本身。
(3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
(4)单独一个非零数的次数是零。
3、多项式
几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。
多项式中,次数最高的项的次数,就是这个多项式的次数.一般说几次几项式。
4、整式
单项式和多项式统称为整式。整式是代数式的一部分,在代数式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。
5、同类项
所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
注意:①两个相同:字母相同;相同字母的指数相等.②两个无关:与系数无关;与字母顺序无关.
6、合并同类项
把几个同类项合并成一项,叫做合并同类项。
合并同类项法则:
(1)找同类项
(2)合并①各同类项的系数相加作为新的系数,②字母以及字母的指数不变
(3)不同种的同类项间,用“+”号连接
(4)没有同类项的项,连同前面的符号一起照抄
7、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。
8、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
9、代数式求值------------用数值代替字母,按照代数式指明的运算进行计算
化简,求值------------①先化为最简的代数式;②再用数值代替字母,按照代数式指明的运算进行计算
第四章基本平面图形
一、知识框架
二、知识概念
1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线(两点确定一条直线)。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(补充类比:①点到直线的距离:点到直线垂线段的长;②平行线间的距离:平行线间垂线段的长)
(3)线段的中点到两端点的距离相等。(点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。)
(4)线段的大小关系和它们的长度的大小关系是一致的。
(5)比较线段长短方法:度量法、叠合法。
(6)尺规作图:作一条线段等于已知线段。
8、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
10、角的表示:
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
11、角的度量:
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作1’。
把1’的角60等分,每一份叫做1秒的角,1秒记作1”。
1°=60’,1’=60”
直角三角板(45,45,90),(30,60,90)可画出的角除以上角,还有15,75,105,120,135,150这些角都是15的倍数。
12、角的性质:
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)比较两个角大小方法:度量法、叠合法。
(3)尺规作图:作一个角等于已知角。
(4)角可以参与运算。
时针问题:
时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50.
时针与分针夹角=分×5.50-时×300(分针靠近12点)
时针与分针夹角=时×300-分×5.50(时针靠近12点)
若结果大于1800,另一角度用3600减这个角度。
经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。
13、角的平分线:
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
14、多边形:
由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。n边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800/n
过n边形一个顶点有(n-3)条对角线,n边形共(n-3)×n/2条对角线.
15、圆、弧、扇形
圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心
弧:圆上A、B两点之间的部分叫做圆弧,简称弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫圆心角。
第五章一元一次方程
一、知识框架
二、知识概念
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的指数都是1的(整式)方程叫做一元一次方程。
5、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1。
6、列一元一次方程解应用题步骤:
找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答
7、找等量的方法:
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列等量关系式。
(2)画图分析法:…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。
(3)常用公式也可作为等量关系
8、列方程解应用题的常用公式:
(1)行程问题:
①行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间
②基本类型相遇问题追及问题
(2)工程问题:工作量=工效×工时;
(3)比率问题:部分=全体×比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价×折,售价=进价×(1+提高率),利润=售价-成本,利润=利润率×成本;
(6)本息和=本金+利息,利息=本金×利率×期数
(7)原量×(1+增长率)=现量;原量×(1-下降率)=现量(只有1次增减)
(8)周长(C)、面积(S)、体积问题(V):
C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.
第六章数据的收集与整理
一、知识框架
二、知识概念
1、普查和抽样调查
(1)从事一个统计活动大致要经历确定任务,收集数据,整理数据等过程。
我们经常通过调查、试验等方式获得数据信息。项目很大时,还可以通过查阅报纸、相关文献或上网的方式。
(2)为某一特定目的而对所有考察对象进行的全面调查叫做普查。所要考察的对象的全体称为总体。组成总体的每一个考察对象称为个体。
(3)①总体的个数数目较多,普查的工作量较大;②有时受客观条件的限制,无法对所有个体进行普查;③有时调查具有破坏性,不允许普查。
人们往往从总体中抽取部分个体进行调查,这种调查称为抽样调查。
抽样调查时,从总体中抽取的一部分个体叫做总体的一个样本。
样本容量:样本含有个体的数目。
(4)随机调查,就是按机会均等的原则进行调查,即总体中每个个体被选中的可能性都相等。随机调查不是调查方法。
(5)抽样调查的优点是调查范围小,节省时间、人力、物力和财力。缺点是调查结果往往不如普查得到的结果准确。抽样时要注意样本的代表性和广泛性(随机性,真实性)。
2、扇形统计图及其画法:
(1)扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(2)画法:
①计算不同部分占总体的百分比:各项数量/总数×100%。(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比圆心角度数/3600×100%)。
②计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。圆心角度数=3600×百分比
③在圆中画出各个扇形,并标上百分比。
3、频数分布直方图
(1)频数分布直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上,纵轴表示各组的频数。如果样本中数据较多,数据的差也比较大时,频数分布直方图能更清晰、更直观地反映数据的整体状况。
(2)频数分布直方图的制作步骤:
①找出所有数据中的最大值和最小值,并算出它们的差(极差)。
②决定组距和组数(组数:把全体样本分成的组的个数称为组数,当数据在50~100之间时,分组的数量在5-12之间较为适宜;组距:把所有数据分成若干个组,每个小组的两个端点的距离〈注意分点归属问题〉。)
③确定分点
④列出频数分布表.
⑤画频数分布直方图.
(3)条形图和直方图的区别
①条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的的高表示频数;
②条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;
③条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙。
4、各种统计图的特点
①条形统计图:能清楚地表示出每个项目的具体数目。
②折线统计图:能清楚地反映事物的变化情况。
③扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
注意:
①为了较直观比较直观地表达两个统计量的变化速度绘制折线统计图时应注意纵、横坐标同一单位长度所表示的量一定要一致。
②为了较直观地反映几个统计量之间的比例关系绘制条形统计图时应注意纵轴从0开始。
上册数学概念
一、有理数
0既不是正数,也不是负数。
正整数、负整数、0统称为整数。
整数可以看作分母为1的分数.正整数、0负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
原点、正方向、单位长度是数轴三要素。
只有符号不同的两个数叫做互为相反数。
0的相反数仍是0.
数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、一个数同零相加,仍得这个数;
4、两个互为相反数的两个数相加得0。
有理数的减法法则:
减去一个数,等于加上这个数的相反数。
有理数的乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同0相乘,都得0;
3、乘积是1的两个数互为倒数。
有理数的除法法则:
1、除以一个不等于0的数,等于乘以这个数的倒数;
2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的
数,都得0。
求n个相同因数的积的运算,叫做乘方。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;
0的任何次正整数次幂都是0。
有理数的混合运算顺序:
1先乘方,再乘除,最后加减;
2同级运算,从左到右进行;
3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
把一个绝对值大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即1≤a<10,n是正整数),这种计数方法叫做科学计数法。
用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。
四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数
字,都叫做这个数的有效数字。
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
二、整式
单项式、多项式、整式的概念
单项式:由数与字母的乘积组成的代数式叫做单项式。单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。
所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
三、一元一次方程
方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是
整式,这样的方程叫做一元一次方程。
等式两边加(或减)同一个数(或式子),结果仍相等。
等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种
变形叫做移项。
卖价=进价+利润
利润=卖价-进价
利润率=利润÷进价×100%
卖价=进价×(1+利润率)
利润=进价×利润率
四、图形
直线
(1)概念:向两方无限延伸的的一条笔直的线。如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。
(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。
(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
射线
(1)概念:直线上一点和它一旁的部分叫做射线。
(2)特点:只有一个端点,向一方无限延伸,无法度量。
线段
(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。
(2)基本性质:两点之间线段最短。
(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。
线段的中点:把一条线段分成两条相等线段的点。
角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两
条射线是角的两条边。
角度制及换算:
(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。
(2)角度制的换算:
1°=60′1′=60″1周角=360°1平角=180°1直角=90°
(3)换算方法:
把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;
角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角和补角:
(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另
一个角的余角;
(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;
(3)余角的性质:等角的余角相等;
等角的性质:同角的补角相等。
人教版数学上下册知识点
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0.
4.等式的性质:
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项
(1)依据:乘法分配律
(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项
(3)合并时次数不变,只是系数相加减。
6.移项
(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质
(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a≠0)的形式;
(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
8.同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
12.做一元一次方程应用题的重要方法:
(1)认真审题(审题)
(2)分析已知和未知量
(3)找一个合适的等量关系
(4)设一个恰当的未知数
(5)列出合理的方程(列式)
(6)解出方程(解题)
(7)检验
(8)写出答案(作答)
一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题,体验数学发展的一个重要原因是生活实际的需要。
一、目标与要求
1.了解正数与负数是从实际需要中产生的。
2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;
4.了解倒数概念,会求给定有理数的倒数;
5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法
二、重点
正、负数的概念;
正确理解数轴的概念和用数轴上的点表示有理数;
有理数的加法法则;
除法法则和除法运算。
三、难点
负数的概念、正确区分两种不同意义的量;
数轴的概念和用数轴上的点表示有理数;
异号两数相加的法则;
根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。
四、知识框
五、知识点、概念总结
1.正数:比0大的数叫正数。
2.负数:比0小的数叫负数。
3.有理数:
(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:
4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
5.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0等价于a+b=0等价于a、b互为相反数。
6.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
绝对值的问题经常分类讨论;
7.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数0,小数-大数0
8.互为倒数:乘积为1的两个数互为倒数;
注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。
9.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
10.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;
(2)加法的结合律:(a+b)+c=a+(b+c)。
11.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
12.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
13.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
14.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。
15.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n。
16.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
17.科学记数法:
把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
18.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
20.混合运算法则:先乘方,后乘除,最后加减。
练习:
1.若密云水库的水位比标准水位高出3c为+3c某月的水位记录中显示,1日水位为-5c日水位为-1c日水位为+4c则
A.1日与2日水位相差6c日与3日水位相差1c日与3日水位相差5c均不正确
2.篮球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:
最接近标准质量的是_________号篮球;质量最大的篮球比质量最小的篮球重____________克.
3.判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1;
初一(七年级)上册数学知识点:整式的加减是由巨人中考网整理的,供大家参考,下面来看一下初一(七年级)上册数学知识点:整式的加减吧!
整式是初中数学的重要内容,也是考试常考的知识点。在本章学习中,学生可以通过小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
一、目标与要求
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
二、重点
单项式及其相关的概念;
多项式及其相关的概念;
去括号法则,准确应用法则将整式化简。
三、难点
区别单项式的系数和次数;
区别多项式的次数和单项式的次数;
括号前面是“-”号去括号时,括号内各项变号容易产生错误。
四、知识框架
五、知识点、概念总结
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8.多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
11.掌握同类项的概念时注意:
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
12.合并同类项步骤:
(1)准确的找出同类项;
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
(3)写出合并后的结果。
13.在掌握合并同类项时注意:
(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;
(2)不要漏掉不能合并的项;
(3)只要14.整式的拓展
整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。
整式四则运算的主要题型有:
(1)单项式的四则运算
此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。
(2)单项式与多项式的运算
此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。
练习
1、如图1,若D是AB中点,AB=4,则DB=_____________;
2、如果∠α=29°35′,那么∠α的余角的度数为______________;
3、如图2,从家A上学时要走近路到学校B,最近的路线为(填序号),
理由是_______________________________________________;
4、将一个直角三角形绕它的直角边旋转一周得到的几何体是
以上“初一(七年级)上册数学知识点:整式的加减”是由巨人中考网整理的,希望可以帮助大家,更多的精彩内容请查看巨人中考网。
不再有同类项,就是结果(可能是单项式,也可能是多项式)。
初一(七年级)上册数学知识点:几何图形初步是由巨人中考网整理的,供大家参考,下面来看一下初一(七年级)上册数学知识点:几何图形初步吧!
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。
一、目标与要求
1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
二、知识框架
三、重点
从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;
正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;
画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点。
七年级数学上册知识点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab0或;
ab0或;ab=0a=0或b=0;a=
7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.
8.一元一次不等式组的解集的四种类型:设ab
9.几个重要的判断:,,
整式的乘除
1.同底数幂的乘法:a+n,底数不变,指数相加.
2.幂的乘方与积的乘方:(a,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.
3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.
4.单项式与多项式的乘法:+b+c)=++,用单项式去乘多项式的每一项,再把所得的积相加.
5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.
6.乘法公式:
(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
①(a+b)2=a2+2ab+b2,两个数和的平方,等于它们的平方和,加上它们的积的2倍;
②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.
7.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式:;
※(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k
①可以判断ax2+bx+c值的符号;②当x=h时,可求出ax2+bx+c的最大(或最小)值k.
※(3)注意:.
8.同底数幂的除法:a-n,底数不变,指数相减.
9.零指数与负指数公式:
(1)a0=1(aa-n=,(a0).注意:00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.0110-5.
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.
11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.
13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.
线段、角、相交线与平行线
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。编辑以备借鉴。
上学期数学知识点归纳总结
30即不是正数也不是负数。
4正数大于0,负数小于0,正数大于负数。
二有理数
1.有理数由整数和分数组成的数。
包括正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如π
2.整数正整数、0、负整数,统称整数。
3.分数正分数、负分数。
三数轴
1.数轴用直线上的点表示数,这条直线叫做数轴。
画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
2.数轴的三要素原点、正方向、单位长度。
3.相反数只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
四有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律+=+两个数相加,交换加数的位置,和不变。
4.加法结合律++=++三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.?=+?减去一个数,等于加这个数的相反数。
五有理数乘法先定积的符号,再定积的大小
1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律=
4.乘法结合律=
5.乘法分配律+=+
六有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
七乘方1.求个相同因数的积的运算,叫做乘方。
写作。
乘方的结果叫幂,叫底数,叫指数2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
八有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
九科学记数法、近似数、有效数字。
第二章整式一整式
1.整式单项式和多项式的统称叫整式。
2.单项式数与字母的乘积组成的式子叫单项式。
单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4。
次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式几个单项式的和叫做多项式。
6.项组成多项式的每个单项式叫做多项式的项。
7.常数项不含字母的项叫做常数项。
8.多项式的次数多项式中,次数的项的次数叫做这个多项式的次数。
9.同类项多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
二整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变【初一上学期数学知识点归纳总结】
数学上册知识点
1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).
2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.
3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加
号的和的形式.
4、加减混合运算的方法和步骤
(1)将减法统一成加法,并写成省略加号的和的形式;
(2)运用加法的交换律和结合律,简化运算.
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.
6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.
7、倒数:乘积是1的两个数互为倒数.
8、有理数的除法法则
(1)除以一个数等于乘以这个数的倒数;
(2)两数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于零的数,都得0.
9、乘方的有关概念
(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,an读作:a的n次方(或a的n次幂).
(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.
10、科学计数法
把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.
11、有理数的混合运算顺序
(1)先算乘方,再算乘除,最后算加减;
(2)同级运算,按照从左至右的顺序依次进行;
(3)如果有括号,就先算小括号,再算中括号,然后算大括号.
12、近似数:与实际很接近的数.
13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个
近似数精确到那一位.
14、计算器的组成:计算器的面板由显示器和按键组成.
第3章整式的加减
1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普
遍意义.
2、用字母表示数后,字母的取值要根据实际情景来确定.
3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.
4、单独一个数或单独一个字母也是代数式.
5、列代数式的实质就是把文字语言转化为符号语言.
6、列代数式的一般方法有:
(1)抓住关键词,由关键词确定相应的运算符号;
(2)理清运算顺序,一般是先读的先算,必要时添上括号;
(3)较复杂的数量关系,可分段处理;
(4)根据实际问题中的基本数量关系或公式列代数式.
7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.
8、求代数式的值的步骤:先代入,再求值.
9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.
10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.
11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母
的项叫做常数项.
12、在多项式里,最高次项的次数就是这个多项式的次数.
13、单项式和多项式统称为整式.
14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个
字母的降幂排列.
15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个
字母的升幂排列.
16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.
17、把多项式中的同类项合并成一项,叫做合并同类项.
18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
19、去括号法则:
(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;
(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;
20、添括号法则:
(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;
(2)所添括号前面是“—”号,括到括号里的各项改变正负号;
21、整式加减的一般步骤:先去括号,再合并同类项.
第4章生活中的立体图形
1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分
为圆锥和棱锥
2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的
图,即视图.
3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称
为侧视图,依观看的方向不同,有左视图和右视图.
4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据
俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.
5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.
6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的
7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.
8、在多边形中,最基本的图形是三角形.
9、两点之间线段最短.
10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.
11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.
12、把一条线段分成两条相等线段的点,叫做这条线段的中点.
13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转
而成的图形.
14、角的表示方法
(1)当顶点处只有一个角时,用一个大写字母表示;
(2)用三个大写字母表示,注意顶点字母必须写在中间;
(3)用希腊字母或阿拉伯数字表示.
15、角的大小比较:
(1)“形的比较”——叠合法;
(2)“数的比较”——度量法.
16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的
角平分线.
17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),
就说这两个角互为补角.
18、同角(或等角)的余角相等;同角(或等角)的补角相等.
第5章相交线与平行线
1、对顶角相等.
2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.
3、直线外一点与直线上各点连接的所有线段中,垂线段最短.
4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位
于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.
5、在同一平面内不相交的两条直线叫做平行线.
6、经过直线外一点,有1条直线与这条直线平行.
7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
8、平行线的判定方法
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行;
(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;
(5)在同一平面内,垂直于同一条直线的两条直线互相平行.
9、平行线的性质
(1)两直线平行,同位角相等;
(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
第1章走进数学世界
1、数学伴我们成长,测量、称重、计算等都与数学有关.
2、数学与现实生活密切联系,人类离不开数学.
3、人人都能学好数学.
第2章有理数
1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表
示具有相反意义的量.
2、正数和负数
(1)正数都大于零;
(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;
(3)0既不是正数也不是负数,它是正数和负数的分界点.
3、有理数
(4)有理数:正数和分数统称为有理数;
(5)整数包括正整数、0、负整数;
(6)分数包括正分数、负分数.
4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.
5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.
6、有理数的大小比较
(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;
(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.
7、相反数的意义
(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;
(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.
8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.
9、绝对值的意义
(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做a;
(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.
10、绝对值的非负性:对于任何有理数a,都有a≥0.
11、两个负数的大小比较法则:两个负数,绝对值大的反而小.
12、有理数大小的比较方法
(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;
(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.
两个正数,绝对值大的数大;两个负数绝对值大的数反而小.
13、有理数的加法法则
(1)同号两数相加,取加数的符号,并把绝对值相加;
(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;
(3)互为相反数的两个数相加得0;
(4)一个数同0相加仍得这个数.
14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.
15、有理数的加法运算律
16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.
文章来源网络整理,请自行参考使用