两个矩阵合同有什么性质(2个矩阵合同有什么性质或者这2个矩阵有什么共同点)

互联网 2024-04-01 阅读

大家好!对于两个矩阵合同有什么性质你是否还存在疑惑呢?不用担心,今天本站就为大家提供关于两个矩阵合同有什么性质的详尽解读,同时,我们也会探讨涉及到2个矩阵合同有什么性质或者这2个矩阵有什么共同点的相关问题。我们希望能通过这些信息,为大家解决实际问题。现在,让我们开始吧!

两个矩阵合同有什么性质(2个矩阵合同有什么性质或者这2个矩阵有什么共同点)

一、2个矩阵合同有什么性质或者这2个矩阵有什么共同点

两个合同矩阵的共同点:

1、这两个矩阵的正负惯性指数相同;

2、这个两个矩阵的秩相同

3、这个两个矩阵均是实对称矩阵。

合同矩阵的性质:

1、反身性:任意矩阵都与其自身合同;

2、对称性:矩阵A合同于矩阵B,则可以推出矩阵B合同于矩阵A;

3、传递性:矩阵A合同于矩阵B,矩阵B合同于矩阵C,则可以推出矩阵A合同于矩阵C。

扩展资料:

矩阵合同的判别

1、设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同。

2、设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。

参考资料来源:百度百科-合同矩阵

二、两矩阵合同有什么结论

两矩阵合同结论如下:

1、如果两个矩阵合同,则它们有相同的定号,有相同的秩,有相同的正负惯性指数,它们的行列式同号。

2、对于实对称阵,合同的充要条件是具有相同的正负惯性指数。因为实对称阵,总与diag(Ep,-Eq,0)合同,p是正惯性指数,q为负惯性指数。所以对于两个实对称阵A和B,正负惯性指数相同,则A与B都合同于diag(Ep,-Eq,0),根据合同的传递性,可得A与B合同。

怎样判断两个矩阵合同?

从定义的角度考虑,若两个矩阵的秩不相同,则它们不是合同的若存在可逆矩阵C,使得C'AC=B,则A与B合同。

若给两个显式矩阵,判断它们是否合同,只能把它们化成标准型,比较它们的正负惯性指数正负惯性指数分别相等则合同,否则不合同。常用的方法有3种,即配方法、初等变换法和正交变换法。

三、矩阵合同的性质是什么

矩阵合同的性质是:当矩阵A经过若干套初等变换而化为矩阵B时,则称为A合同于B,矩阵之间的这个关系具有反身性、对称性和传递性,所以它是一种等价关系。

矩阵的合同是在讨论用(对称)矩阵表示二次型的问题中产生的。所谓一套初等变换,是指将某一种初等变换首先对一个矩阵的第i列(行)施行而得一矩阵,然后再对此所得矩阵的第i行(列)施行又得一矩阵。

合同关系是一个等价关系,也就是说满足:

1、反身性:任意矩阵都与其自身合同。

2、对称性:A合同于B,则可以推出B合同于A。

3、传递性:A合同于B,B合同于C,则可以推出A合同于C。

4、合同矩阵的秩相同。

本站所有文章资源内容,如无特殊说明或标注,均为网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

医院合同制会一直续签吗(医院签三年合同稳定吗)

协商不一致算违法解除吗(公司直接下发解除合同通知)